零基础玩转IQuest-Coder:40B代码大模型实战教程

零基础玩转IQuest-Coder:40B代码大模型实战教程

你是否曾幻想过拥有一个能帮你写代码、查Bug、优化算法的“AI编程搭档”?现在,它来了!

IQuest-Coder-V1-40B-Instruct是一款面向软件工程与竞技编程的新一代代码大语言模型(LLM),在多个权威编码基准测试中表现卓越。本文将带你从零开始,手把手完成该模型的本地部署与调用,即使你是AI或深度学习新手,也能轻松上手。

我们将使用vLLM作为推理引擎,在多GPU环境下高效运行这个40B参数量的大模型,并解决部署过程中可能遇到的关键报错问题。


1. 学习目标与前置知识

✅ 你能学到什么?

  • 如何搭建支持大型代码模型的本地推理环境
  • 使用vLLM部署 HuggingFace 格式的 LLM 模型
  • 解决自定义架构模型不被 vLLM 支持的问题(Patch 实操)
  • 下载并运行 IQuest-Coder-V1-40B-Instruct 指令模型
  • 通过 API 调用你的本地 AI 编程助手

🧱 前置要求

项目推荐配置
操作系统Ubuntu 20.04+
GPU至少4张NVIDIA L20/A100(显存≥48GB)
显存总量≥192GB(用于40B模型量化推理)
CUDA版本12.1+
Python3.10~3.12
磁盘空间≥200GB(模型文件约150GB)

💡提示:如果你没有本地高性能服务器,可考虑云平台租用实例(如阿里云、AutoDL等)进行实验。


2. 环境准备:构建vLLM推理环境

我们首先创建一个独立的虚拟环境来安装所有依赖项,避免与其他项目冲突。

2.1 创建Python虚拟环境

# 创建名为 vllm_env 的虚拟环境 python3 -m venv vllm_env # 激活环境 source vllm_env/bin/activate # 升级pip pip install --upgrade pip

2.2 安装核心依赖库

# 安装最新版vLLM(推荐0.13.0以上) pip install vllm # 安装DLPack扩展(部分CUDA操作需要) pip install torch-c-dlpack-ext # 安装魔搭(ModelScope)客户端用于下载模型 pip install modelscope

✅ 此时你的基础推理环境已准备就绪。


3. 模型下载:获取IQuest-Coder-V1-40B-Instruct

该模型托管于ModelScope(魔搭)社区,我们使用其命令行工具下载。

3.1 执行下载命令

modelscope download \ --model IQuestLab/IQuest-Coder-V1-40B-Loop-Instruct \ --local_dir ./IQuest-Coder-V1-40B-Loop-Instruct

📌说明: ---model:指定模型ID ---local_dir:本地保存路径

⚠️注意:由于模型体积巨大(FP16约150GB),下载时间较长,请确保网络稳定和磁盘充足。


4. 关键修复:为vLLM打补丁以支持IQuest架构

直接运行模型会报错:

Model architectures ['IQuestLoopCoderForCausalLM'] are not supported

这是因为 vLLM 尚未原生支持 IQuest-Coder 的自定义模型结构。我们需要手动添加支持。

4.1 修改模型注册表

找到 vLLM 安装目录下的模型注册文件:

vim vllm_env/lib/python3.12/site-packages/vllm/model_executor/models/registry.py

"Zamba2ForCausalLM": ("zamba2", "Zamba2ForCausalLM")后新增两行:

"IQuestLoopCoderForCausalLM": ("iquest_loopcoder", "IQuestLoopCoderForCausalLM"), "IQuestCoderForCausalLM": ("llama", "LlamaForCausalLM"),

这一步告诉 vLLM:当遇到IQuestLoopCoderForCausalLM类型时,去加载名为iquest_loopcoder.py的模块。

4.2 创建自定义模型实现文件

新建文件:

touch vllm_env/lib/python3.12/site-packages/vllm/model_executor/models/iquest_loopcoder.py

将以下完整代码粘贴进去(即官方 PR 提供的实现):

# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only LoopCoder model compatible with HuggingFace weights.""" from __future__ import annotations from collections.abc import Iterable from dataclasses import replace from typing import Any import torch from torch import nn from transformers import PretrainedConfig from vllm.attention.backends.abstract import AttentionType from vllm.attention.layer import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import get_tensor_model_parallel_world_size from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.layernorm import LayerNorm from vllm.model_executor.layers.linear import ( ColumnParallelLinear, MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import ( default_weight_loader, maybe_remap_kv_scale_name, ) from vllm.sequence import IntermediateTensors from .utils import ( AutoWeightsLoader, extract_layer_index, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix, ) class LoopCoderRMSNorm(nn.Module): """ LoopCoderRMSNorm is equivalent to T5LayerNorm. """ def __init__(self, hidden_size: int, eps: float = 1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states: torch.Tensor): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class LoopCoderMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, quant_config: QuantizationConfig | None = None, prefix: str = "", ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config, prefix=f"{prefix}.gate_up_proj", ) self.down_proj = RowParallelLinear( intermediate_size, hidden_size, bias=False, quant_config=quant_config, prefix=f"{prefix}.down_proj", ) if hidden_act != "silu": raise ValueError( f"Unsupported activation: {hidden_act}. Only silu is supported for now." ) self.act_fn = SiluAndMul() def forward(self, x): gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class LoopCoderAttention(nn.Module): def __init__( self, config: PretrainedConfig, hidden_size: int, num_heads: int, num_kv_heads: int, max_position: int = 4096 * 32, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", attn_type: str = AttentionType.DECODER, dual_chunk_attention_config: dict[str, Any] | None = None, layer_idx: int = 0 ) -> None: super().__init__() self.layer_idx = layer_idx self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.dual_chunk_attention_config = dual_chunk_attention_config # Get loop_num from config, default to 2 if not specified self.loop_num = getattr(config, "loop_num", 2) self.loop_window_size = getattr(config, "loop_window_size", 64) # Use total number of hidden layers instead of hardcoded 24 total_layers = config.num_hidden_layers self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=False, quant_config=quant_config, prefix=f"{prefix}.qkv_proj", ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, prefix=f"{prefix}.o_proj", ) self.rotary_emb = get_rope( self.head_dim, max_position=max_position, rope_parameters=config.rope_parameters, dual_chunk_attention_config=dual_chunk_attention_config, ) self.attn = nn.ModuleList() base_cache_config = cache_config for loop_idx in range(self.loop_num): base_layer_idx = extract_layer_index(prefix) unique_layer_idx = loop_idx * total_layers + base_layer_idx unique_prefix = prefix.replace( f"layers.{base_layer_idx}", f"layers.{unique_layer_idx}" ) if loop_idx == 0: loop_cache_config = cache_config else: if base_cache_config is not None: loop_cache_config = replace( base_cache_config, sliding_window=self.loop_window_size, ) else: loop_cache_config = CacheConfig( sliding_window=self.loop_window_size, cache_dtype="auto", ) self.attn.append( Attention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=loop_cache_config, quant_config=quant_config, attn_type=attn_type, prefix=f"{unique_prefix}.attn", **{ "layer_idx": unique_layer_idx, "dual_chunk_attention_config": dual_chunk_attention_config, } if dual_chunk_attention_config and loop_idx == 0 else {}, ) ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, loop_idx: int, gate_proj: LoopGateProjection | None = None, ) -> torch.Tensor: if loop_idx == 0: attn = self.attn[0] qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = attn(q, k, v) output, _ = self.o_proj(attn_output) return output else: global_attn = self.attn[0] local_attn = self.attn[loop_idx] qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) num_tokens, _ = q.shape num_heads = self.num_heads head_dim = self.head_dim q_reshaped = q.view(num_tokens, num_heads, head_dim).transpose(0, 1) global_attn_output = global_attn(q, None, None) local_attn_output = local_attn(q, k, v) assert gate_proj is not None, "gate_proj must be provided for loop_idx > 0" gate = gate_proj(q_reshaped) output = global_attn_output * gate + local_attn_output * (1 - gate) output, _ = self.o_proj(output) return output class LoopCoderDecoderLayer(nn.Module): def __init__( self, config: PretrainedConfig, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", layer_idx: int = 0 ) -> None: super().__init__() self.hidden_size = config.hidden_size dual_chunk_attention_config = getattr( config, "dual_chunk_attention_config", None ) self.layer_idx = layer_idx if getattr(config, "is_causal", True): attn_type = AttentionType.DECODER else: attn_type = AttentionType.ENCODER_ONLY self.self_attn = LoopCoderAttention( config=config, hidden_size=self.hidden_size, num_heads=config.num_attention_heads, max_position=config.max_position_embeddings, num_kv_heads=config.num_key_value_heads, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.self_attn", attn_type=attn_type, dual_chunk_attention_config=dual_chunk_attention_config, layer_idx=self.layer_idx, ) self.mlp = LoopCoderMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, quant_config=quant_config, prefix=f"{prefix}.mlp", ) self.input_layernorm = LoopCoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = LoopCoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, loop_idx: int, gate_proj: LoopGateProjection | None = None, ) -> tuple[torch.Tensor, torch.Tensor]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, loop_idx=loop_idx, gate_proj=gate_proj, ) hidden_states = hidden_states + residual residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = hidden_states + residual return hidden_states class LoopGateProjection(nn.Module): """Gate projection for mixed attention in Loop 2+. Computes: g = sigmoid(linear(Q)) for each head independently. This gate determines how much to use Loop1's KV (global) vs current loop's KV (local). Supports tensor parallelism: each GPU handles a subset of heads. The weight matrix has shape [num_heads, head_dim] and is split along the head dimension. """ def __init__( self, total_num_heads: int, head_dim: int, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() self.total_num_heads = total_num_heads self.head_dim = head_dim tp_size = get_tensor_model_parallel_world_size() assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.gate_proj = ColumnParallelLinear( head_dim, self.total_num_heads, bias=True, gather_output=False, quant_config=quant_config, prefix=prefix, ) def forward(self, query: torch.Tensor) -> torch.Tensor: """Compute gate values from query tensor. Args: query: [num_heads, num_tokens, head_dim] (vLLM flattened format) where num_heads is the number of heads on this TP rank and num_tokens = batch * seq_len Returns: gate: [num_tokens, num_heads * head_dim] (flattened format matching q shape) """ num_heads, num_tokens, head_dim = query.shape assert num_heads == self.num_heads, f"Expected {self.num_heads} heads, got {num_heads}" query_flat = query.reshape(-1, head_dim) gate_logits_flat, _ = self.gate_proj(query_flat) gate_logits = gate_logits_flat.reshape(num_heads, num_tokens, self.num_heads) # [num_heads, num_tokens, num_heads] # Extract diagonal: each head h's query should use output column h # gate_logits[h, :, h] gives the output for head h at each token gate_logits = torch.diagonal(gate_logits, dim1=0, dim2=2) # [num_tokens, num_heads] gate_logits = gate_logits.transpose(0, 1) # [num_heads, num_tokens] gate_logits = gate_logits.unsqueeze(-1) # [num_heads, num_tokens, 1] # Apply sigmoid gate = torch.sigmoid(gate_logits) # [num_heads, num_tokens, 1] # Expand and reshape to match q shape: [num_tokens, num_heads * head_dim] gate = gate.transpose(0, 1) # [num_tokens, num_heads, 1] gate = gate.expand(-1, -1, head_dim) # [num_tokens, num_heads, head_dim] gate = gate.reshape(num_tokens, num_heads * head_dim) # [num_tokens, num_heads * head_dim] return gate @support_torch_compile( dynamic_arg_dims={ "input_ids": 0, "positions": -1, "intermediate_tensors": 0, "inputs_embeds": 0, } ) class IQuestLoopCoderModel(nn.Module): def __init__( self, *, vllm_config: VllmConfig, prefix: str = "", decoder_layer_type: type[nn.Module] = LoopCoderDecoderLayer, ): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config # TODO (@robertgshaw2): see if this can be moved out if cache_config.sliding_window is not None and hasattr( config, "max_window_layers" ): assert config.max_window_layers == config.num_hidden_layers, ( "Sliding window for some but all layers is not supported. " "This model uses sliding window but `max_window_layers` = {} " "is less than `num_hidden_layers` = {}. Please open an issue " "to discuss this feature.".format( config.max_window_layers, config.num_hidden_layers, ) ) self.config = config self.quant_config = quant_config self.vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=f"{prefix}.embed_tokens", ) self.loop_num = getattr(self.config, "loop_num", 2) self.window_size = getattr(self.config, "loop_window_size", 64) # Gate projections for Loop 2+ (one per layer) head_dim = config.hidden_size // config.num_attention_heads _, _, self.gate_projections = make_layers( config.num_hidden_layers, lambda prefix: LoopGateProjection( total_num_heads=config.num_attention_heads, head_dim=head_dim, quant_config=quant_config, prefix=prefix, ), prefix=f"{prefix}.gate_projections", ) self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: LoopCoderDecoderLayer( config=config, cache_config=cache_config, quant_config=quant_config, prefix=prefix, layer_idx=extract_layer_index(prefix), ), prefix=f"{prefix}.layers", ) self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory( ["hidden_states", "residual"], config.hidden_size ) self.norm = LoopCoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.embed_input_ids(input_ids) for loop_idx in range(self.loop_num): for layer_idx, layer in enumerate(self.layers[self.start_layer : self.end_layer]): # Get the actual layer index (accounting for pipeline parallelism) actual_layer_idx = self.start_layer + layer_idx # Get gate_proj for this layer (only for loop_idx > 0) gate_proj = ( self.gate_projections[actual_layer_idx] if loop_idx > 0 else None ) hidden_states = layer( positions, hidden_states, loop_idx, gate_proj ) hidden_states = self.norm(hidden_states) return hidden_states def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters(remove_duplicate=False)) loaded_params: set[str] = set() for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue if self.quant_config is not None and ( scale_name := self.quant_config.get_cache_scale(name) ): # Loading kv cache quantization scales param = params_dict[scale_name] weight_loader = getattr(param, "weight_loader", default_weight_loader) loaded_weight = ( loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0] ) weight_loader(param, loaded_weight) loaded_params.add(scale_name) continue for param_name, weight_name, shard_id in stacked_params_mapping: if "gate_projections" in name: continue if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if name.endswith("scale"): # Remapping the name of FP8 kv-scale. name = maybe_remap_kv_scale_name(name, params_dict) if name is None: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) if weight_loader == default_weight_loader: weight_loader(param, loaded_weight) else: weight_loader(param, loaded_weight, shard_id) break else: if name.startswith("gate_projections."): if name.endswith(".weight"): vllm_name = name.replace(".weight", ".gate_proj.weight") elif name.endswith(".bias"): vllm_name = name.replace(".bias", ".gate_proj.bias") else: continue if vllm_name in params_dict: param = params_dict[vllm_name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(vllm_name) continue continue if name.endswith(".bias") and name not in params_dict: continue # Remapping the name of FP8 kv-scale. name = maybe_remap_kv_scale_name(name, params_dict) if name is None: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class IQuestLoopCoderForCausalLM(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config self.config = config self.quant_config = quant_config self.model = IQuestLoopCoderModel( vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model") ) if config.tie_word_embeddings: self.lm_head = self.model.embed_tokens else: self.lm_head = ParallelLMHead( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=maybe_prefix(prefix, "lm_head"), ) self.logits_processor = LogitsProcessor(config.vocab_size) self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors ) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.embed_input_ids(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors: hidden_states = self.model( input_ids, positions, intermediate_tensors, inputs_embeds ) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, ) -> torch.Tensor | None: logits = self.logits_processor(self.lm_head, hidden_states) return logits def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader( self, skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None), ) return loader.load_weights(weights)

✅ 至此,vLLM 已完全支持 IQuest-Coder 模型。


5. 启动模型服务

一切准备就绪,启动模型!

vllm serve ./IQuest-Coder-V1-40B-Loop-Instruct \ --host 0.0.0.0 \ --port 8000 \ --tensor-parallel-size 4 \ --trust-remote-code \ --dtype bfloat16 \ --gpu-memory-utilization 0.85

参数说明:

参数作用
--tensor-parallel-size 4使用4块GPU做张量并行
--trust-remote-code允许加载自定义模型类
--dtype bfloat16使用bfloat16精度节省显存
--gpu-memory-utilization 0.85控制显存利用率防止OOM

启动成功后,你会看到类似输出:

INFO: Started server process [PID] INFO: Waiting for application startup. INFO: Application startup complete. INFO: Uvicorn running on http://0.0.0.0:8000

🎉 恭喜!你的IQuest-Coder 40B模型已成功运行!


6. 调用模型API:体验AI编程助手

你可以通过 OpenAI 兼容接口调用该模型。

示例请求(Python)

import requests url = "http://localhost:8000/v1/completions" headers = {"Content-Type": "application/json"} data = { "model": "./IQuest-Coder-V1-40B-Loop-Instruct", "prompt": "写一个快速排序的Python实现,并加上详细注释。", "max_tokens": 512, "temperature": 0.2 } response = requests.post(url, json=data, headers=headers) print(response.json()["choices"][0]["text"])

返回示例(节选)

def quicksort(arr): """ 快速排序函数 参数: arr - 待排序列表 返回: 排好序的新列表 """ if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quicksort(left) + middle + quicksort(right)

是不是又快又准?这才是真正的“智能编程”!


7. 总结

本文带你完成了IQuest-Coder-V1-40B-Instruct模型的完整本地部署流程:

  1. ✅ 搭建了基于 vLLM 的高性能推理环境
  2. ✅ 成功下载并加载了百亿参数代码模型
  3. ✅ 解决了因架构不兼容导致的Model architectures [...] are not supported报错
  4. ✅ 通过打补丁方式扩展了 vLLM 对新模型的支持能力
  5. ✅ 实现了本地 API 服务调用,打造专属 AI 编程助手

这款模型不仅能在常规编码任务中表现出色,在SWE-Bench Verified(76.2%)LiveCodeBench v6(81.1%)等复杂软件工程评测中也处于领先水平,是当前最具潜力的代码大模型之一。


💡获取更多AI镜像

想探索更多AI镜像和应用场景?访问 CSDN星图镜像广场,提供丰富的预置镜像,覆盖大模型推理、图像生成、视频生成、模型微调等多个领域,支持一键部署。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1152047.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MediaPipe Pose性能对比:不同硬件下的表现

MediaPipe Pose性能对比&#xff1a;不同硬件下的表现 1. 引言&#xff1a;AI人体骨骼关键点检测的现实挑战 随着计算机视觉技术的发展&#xff0c;人体姿态估计&#xff08;Human Pose Estimation&#xff09;已成为智能健身、动作捕捉、虚拟试衣、安防监控等场景的核心支撑…

开箱即用!HY-MT1.5-1.8B模型快速接入Web服务的三种方式

开箱即用&#xff01;HY-MT1.5-1.8B模型快速接入Web服务的三种方式 1. 引言 在全球化信息流动日益频繁的今天&#xff0c;高质量、低延迟的机器翻译能力已成为企业级应用和智能服务的核心需求。腾讯混元团队推出的 HY-MT1.5-1.8B 翻译模型&#xff0c;凭借其卓越的性能与轻量…

DownKyi视频下载神器:打造专属B站离线资源库的完整指南

DownKyi视频下载神器&#xff1a;打造专属B站离线资源库的完整指南 【免费下载链接】downkyi 哔哩下载姬downkyi&#xff0c;哔哩哔哩网站视频下载工具&#xff0c;支持批量下载&#xff0c;支持8K、HDR、杜比视界&#xff0c;提供工具箱&#xff08;音视频提取、去水印等&…

AI人体骨骼检测压力测试:并发请求下系统稳定性评估

AI人体骨骼检测压力测试&#xff1a;并发请求下系统稳定性评估 1. 引言&#xff1a;AI 人体骨骼关键点检测的工程挑战 随着计算机视觉技术的快速发展&#xff0c;人体姿态估计&#xff08;Human Pose Estimation&#xff09;已成为智能健身、动作捕捉、虚拟现实和安防监控等场…

开箱即用!IQuest-Coder一键启动代码生成神器

开箱即用&#xff01;IQuest-Coder一键启动代码生成神器 1. 背景与技术定位 近年来&#xff0c;随着大语言模型在代码生成领域的持续突破&#xff0c;自主软件工程&#xff08;Agent-based Software Engineering&#xff09; 和 智能编程助手 正从概念走向落地。然而&#xf…

LeaguePrank英雄联盟美化工具终极使用指南

LeaguePrank英雄联盟美化工具终极使用指南 【免费下载链接】LeaguePrank 项目地址: https://gitcode.com/gh_mirrors/le/LeaguePrank 你是否曾经羡慕过那些拥有炫酷王者段位显示的好友&#xff1f;是否想要为自己的英雄联盟个人资料页换上与众不同的背景&#xff1f;Le…

MediaPipe Pose与ROS集成:机器人动作模仿系统搭建

MediaPipe Pose与ROS集成&#xff1a;机器人动作模仿系统搭建 1. 引言&#xff1a;AI驱动的机器人动作模仿新范式 1.1 业务场景描述 在服务机器人、康复训练设备和人机协作系统中&#xff0c;实时人体动作捕捉与模仿是一项关键能力。传统动捕系统依赖昂贵的传感器阵列或深度…

AI人体骨骼检测入门必看:33个3D关节点定位参数详解

AI人体骨骼检测入门必看&#xff1a;33个3D关节点定位参数详解 1. 引言&#xff1a;AI人体骨骼关键点检测的现实价值 在计算机视觉领域&#xff0c;人体姿态估计&#xff08;Human Pose Estimation&#xff09; 是一项基础而关键的技术。它通过分析图像或视频中的人体结构&am…

AI人体骨骼检测轻量化实践:模型裁剪与推理加速教程

AI人体骨骼检测轻量化实践&#xff1a;模型裁剪与推理加速教程 1. 引言&#xff1a;AI 人体骨骼关键点检测的现实挑战 随着计算机视觉技术的发展&#xff0c;人体骨骼关键点检测&#xff08;Human Pose Estimation&#xff09;已成为智能健身、动作捕捉、虚拟试衣、人机交互等…

5分钟部署IQuest-Coder:vLLM环境搭建与避坑指南

5分钟部署IQuest-Coder&#xff1a;vLLM环境搭建与避坑指南 1. 引言 1.1 背景与价值 随着大模型在代码生成、智能编程助手等领域的广泛应用&#xff0c;具备强大推理能力的代码专用大语言模型正成为开发者和研究者的首选工具。近期发布的 IQuest-Coder-V1-40B-Instruct 模型…

IQuest-Coder-V1效果展示:自动编程案例惊艳分享

IQuest-Coder-V1效果展示&#xff1a;自动编程案例惊艳分享 1. 引言&#xff1a;国产代码大模型的新突破 在AI驱动软件工程的浪潮中&#xff0c;国内团队再次交出亮眼答卷。九坤投资旗下至知创新研究院发布的 IQuest-Coder-V1 系列模型&#xff0c;凭借其在多个权威编码基准测…

ViGEmBus驱动安装配置全攻略:如何快速搭建虚拟游戏控制器环境

ViGEmBus驱动安装配置全攻略&#xff1a;如何快速搭建虚拟游戏控制器环境 【免费下载链接】ViGEmBus 项目地址: https://gitcode.com/gh_mirrors/vig/ViGEmBus 还在为Windows游戏无法识别第三方手柄而烦恼吗&#xff1f;ViGEmBus作为一款专业的虚拟游戏手柄仿真框架&am…

破解Unity多语言难题:XUnity.AutoTranslator终极配置方案

破解Unity多语言难题&#xff1a;XUnity.AutoTranslator终极配置方案 【免费下载链接】XUnity.AutoTranslator 项目地址: https://gitcode.com/gh_mirrors/xu/XUnity.AutoTranslator 您是否曾为Unity游戏的多语言支持而烦恼&#xff1f;面对复杂的本地化流程和繁琐的文…

XUnity游戏翻译插件终极指南:架构深度解析与技术实现

XUnity游戏翻译插件终极指南&#xff1a;架构深度解析与技术实现 【免费下载链接】XUnity.AutoTranslator 项目地址: https://gitcode.com/gh_mirrors/xu/XUnity.AutoTranslator 在全球化游戏生态中&#xff0c;语言壁垒始终是玩家体验完整游戏内容的最大障碍。XUnity …

AI姿态检测优化:MediaPipe Pose推理加速指南

AI姿态检测优化&#xff1a;MediaPipe Pose推理加速指南 1. 引言&#xff1a;AI人体骨骼关键点检测的现实挑战 在智能健身、动作捕捉、虚拟试衣和人机交互等前沿应用中&#xff0c;人体骨骼关键点检测&#xff08;Human Pose Estimation&#xff09;已成为核心技术之一。其目…

I2S协议快速理解:一文说清数据帧结构与通道

I2S协议深度解析&#xff1a;从数据帧到声道控制&#xff0c;一文讲透音频传输核心机制你有没有遇到过这样的问题&#xff1f;调试一个麦克风采集系统时&#xff0c;录音总是有杂音&#xff1b;或者左右声道反了&#xff0c;明明是左耳的声音却从右喇叭出来。查了一圈硬件、代码…

5分钟上手IQuest-Coder:竞技编程大模型零基础入门指南

5分钟上手IQuest-Coder&#xff1a;竞技编程大模型零基础入门指南 引言&#xff1a;为什么你需要关注IQuest-Coder&#xff1f; 在竞技编程和自主软件工程快速演进的今天&#xff0c;开发者面临的核心挑战已从“是否会写代码”转向“能否高效生成高质量、逻辑严密且可执行的代…

haxm is not installed怎么解决:深度剖析驱动安装失败原因

当HAXM罢工时&#xff1a;一个Android开发者的虚拟化救赎之路 你有没有过这样的早晨&#xff1f;咖啡刚泡好&#xff0c;项目正要进入关键调试阶段&#xff0c;点开Android Studio准备启动模拟器——结果弹出一句冰冷提示&#xff1a;“ haxm is not installed ”。 那一刻&…

MediaPipe Pose技术揭秘:33个关键点定位原理详解

MediaPipe Pose技术揭秘&#xff1a;33个关键点定位原理详解 1. 引言&#xff1a;AI人体骨骼关键点检测的技术演进 随着计算机视觉与深度学习的飞速发展&#xff0c;人体姿态估计&#xff08;Human Pose Estimation&#xff09;已成为智能健身、动作捕捉、虚拟现实和人机交互…

MediaPipe骨骼检测性能评测:CPU推理毫秒级响应实测

MediaPipe骨骼检测性能评测&#xff1a;CPU推理毫秒级响应实测 1. 背景与评测目标 随着AI在健身指导、动作识别、虚拟试衣等场景的广泛应用&#xff0c;人体骨骼关键点检测&#xff08;Human Pose Estimation&#xff09;已成为计算机视觉中的核心任务之一。其目标是从单张RG…