CoT+RAG+AI推理·工程手记 篇六:模型加载和多轮流式对话实现

文章目录

      • 系列文章
      • 源码注释版
      • 核心流程解析
        • 1. 单例模式初始化与模型加载流程(模块入口,仅执行一次)
        • 2. 合规 Prompt 构建与格式化流程(生成任务前置准备)
        • 3. 基础同步生成流程(`generate` 方法,一次性返回完整结果)
        • 4. 流式生成流程(`stream_generate` 方法,逐 Token 返回结果)
        • 5. 多轮流式对话流程(`stream_chat_multi_turn` 方法,支持上下文保持)
      • 多轮对话处理机制详解
        • `chat_template` 支持的功能
        • 使用方式

系列文章

CoT+RAG+AI推理·工程手记 篇一:系统架构与工程结构概览
CoT+RAG+AI推理·工程手记 篇二:Hugging Face 与 DeepSeek 模型生态全景解析
CoT+RAG+AI推理·工程手记 篇三:Hugging Face 模型仓库结构全解析
CoT+RAG+AI推理·工程手记 篇四:DeepSeek-R1-0528-Qwen3-8B 模型解析
CoT+RAG+AI推理·工程手记 篇五:BGE-Large-ZH-V1.5 模型解析

源码注释版

#!/usr/bin/env python3

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1150058.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CV-UNet Universal Matting镜像解析|附单图与批量处理实战

CV-UNet Universal Matting镜像解析|附单图与批量处理实战 1. 技术背景与应用价值 随着AI图像处理技术的快速发展,智能抠图(Image Matting) 已成为电商、设计、影视后期等领域的核心需求。传统手动抠图耗时费力,而基…

今日行情明日机会——20260112

上证指数今天放量收阳线,均线多头排列,短期走势非常强势,量能接近历史记录。板块上人工智能、商业航天等涨幅居前。深证指数今天放量收中阳线,均线多头排列,走势非常强势。个股今天上涨明显多于下跌,总体行…

StructBERT中文情感分析实战|WebUI+API双模式支持

StructBERT中文情感分析实战|WebUIAPI双模式支持 1. 项目背景与技术选型 1.1 中文情感分析的现实需求 在当前互联网内容爆炸式增长的背景下,用户评论、社交媒体发言、客服对话等文本数据中蕴含着丰富的情感信息。企业需要快速识别用户情绪倾向&#x…

CoT+RAG+AI推理·工程手记 篇七:搜索增强生成(RAG)实现

文章目录 系列文章 RAG主服务源码注释版 PDF解析服务源码注释版 RAG系统核心处理流程 联网搜索功能实现概述 系列文章 CoT+RAG+AI推理工程手记 篇一:系统架构与工程结构概览 CoT+RAG+AI推理工程手记 篇二:Hugging Face 与 DeepSeek 模型生态全景解析 CoT+RAG+AI推理工程手记…

CV-UNet Universal Matting镜像核心优势解析|附一键抠图实战

CV-UNet Universal Matting镜像核心优势解析|附一键抠图实战 1. 背景与技术痛点 在图像处理、电商展示、影视后期和AI内容生成等领域,精准的图像抠图(Image Matting) 是一项高频且关键的需求。传统手动抠图耗时耗力,…

快速搭建中文文本相似度系统|GTE模型WebUI+API双模式实践指南

快速搭建中文文本相似度系统|GTE模型WebUIAPI双模式实践指南 1. 项目背景与核心价值 在自然语言处理(NLP)领域,语义相似度计算是构建智能搜索、问答系统、推荐引擎和RAG(检索增强生成)架构的关键技术之一…

如何高效实现中文文本匹配?GTE语义相似度镜像一键集成方案

如何高效实现中文文本匹配?GTE语义相似度镜像一键集成方案 1. 引言:中文语义匹配的现实挑战与轻量化破局 在智能客服、内容推荐、文档去重等实际业务场景中,准确判断两段中文文本的语义是否相近是一项基础而关键的能力。传统方法如关键词重…

如何高效计算文本相似度?GTE中文向量镜像一键部署指南

如何高效计算文本相似度?GTE中文向量镜像一键部署指南 1. 项目概览:GTE 中文语义相似度服务是什么? 在自然语言处理(NLP)的实际应用中,文本相似度计算是构建推荐系统、问答匹配、内容去重、RAG引文验证等…

【HarmonyOS NEXT】多线程并发-taskpool与worker区别

一、背景在鸿蒙开发中,提供了TaskPool与Worker两种多线程并发方案,两种方案在效果与使用上存在差异二、两者区别2.1、使用场景对比项TaskPool(任务池)Worker(工作线程)任务类型计算密集型、短时任务I/O密集…

CV-UNet Universal Matting镜像解析|附抠图全流程实践

CV-UNet Universal Matting镜像解析|附抠图全流程实践 1. 技术背景与核心价值 在图像处理和计算机视觉领域,图像抠图(Image Matting) 是一项基础但极具挑战性的任务。传统方法依赖于用户手动标注前景、背景或半透明区域&#xf…

无需GPU!用GTE CPU版镜像快速构建中文文本相似度系统

无需GPU!用GTE CPU版镜像快速构建中文文本相似度系统 在没有GPU资源的环境下,如何高效实现中文语义相似度计算?传统方案往往依赖高性能显卡进行向量推理,导致部署成本高、门槛大。本文介绍一款基于 GTE 中文语义相似度服务 的轻量…

从零构建中文相似度系统|基于GTE大模型镜像的实践全解析

从零构建中文相似度系统|基于GTE大模型镜像的实践全解析 在自然语言处理(NLP)领域,语义相似度计算是搜索、推荐、问答和RAG系统中的核心能力。传统的关键词匹配方法已无法满足对“语义理解”的高要求。近年来,随着文本…

舆情分析新利器|GTE语义相似度镜像集成WebUI与API

舆情分析新利器|GTE语义相似度镜像集成WebUI与API 在舆情监控、热点发现和文本聚类等实际业务场景中,语义相似度计算是核心基础能力之一。传统的关键词匹配或TF-IDF方法难以捕捉深层语义关联,而基于深度学习的文本向量模型则提供了更精准的解…

快速部署抠图WebUI|CV-UNet大模型镜像开箱即用指南

快速部署抠图WebUI|CV-UNet大模型镜像开箱即用指南 1. 引言:为什么需要一键式抠图解决方案? 在图像处理、电商设计、内容创作等领域,高质量的图像抠图(Image Matting)是不可或缺的基础能力。传统手动抠图…

基于UNet的智能抠图技术落地|CV-UNet大模型镜像开箱即用

基于UNet的智能抠图技术落地|CV-UNet大模型镜像开箱即用 1. 背景与需求:传统抠图的瓶颈与AI破局 在图像处理、电商设计、影视后期等领域,精确抠图(Image Matting)一直是核心但耗时的任务。传统方法如Photoshop魔棒、…

FunASR + speech_ngram_lm_zh-cn 语音识别实战|附WebUI部署指南

FunASR speech_ngram_lm_zh-cn 语音识别实战|附WebUI部署指南 1. 背景与技术选型 1.1 为什么选择 FunASR? 在当前中文语音识别领域,FunASR 是由阿里云推出的一套功能完整、支持端到端推理的开源语音识别工具包。它不仅支持离线和在线模式…

高效融合视觉语音文本|AutoGLM-Phone-9B模型本地化应用实践

高效融合视觉语音文本|AutoGLM-Phone-9B模型本地化应用实践 1. 引言:移动端多模态大模型的落地挑战 随着AI技术向终端设备下沉,如何在资源受限的移动平台上实现高效、低延迟、多模态融合的大语言模型推理,成为当前智能硬件与边缘…

一键批量抠图实践|基于CV-UNet Universal Matting大模型镜像高效实现

一键批量抠图实践|基于CV-UNet Universal Matting大模型镜像高效实现 随着AI图像处理技术的快速发展,智能抠图已从传统依赖人工标注Trimap的复杂流程,演进为“上传即出结果”的自动化体验。尤其在电商、设计、内容创作等领域,高效…

CV-UNet Universal Matting镜像核心功能解析|附单图与批量处理实战

CV-UNet Universal Matting镜像核心功能解析|附单图与批量处理实战 1. 技术背景与应用价值 图像抠图(Image Matting)是计算机视觉中一项关键的预处理技术,广泛应用于电商展示、影视后期、AI换脸、虚拟现实等领域。传统抠图方法依…

中文语义相似度实战|基于GTE模型镜像快速构建WebUI与API服务

中文语义相似度实战|基于GTE模型镜像快速构建WebUI与API服务 1. 项目概览:GTE中文语义相似度服务是什么? 在自然语言处理(NLP)领域,语义相似度计算是理解文本间内在关系的核心任务之一。无论是智能客服中…