基于DP_MPC算法的氢能源动力无人机能量管理 背景:随着氢燃料的开发,氢能源被应用到许多领域...

基于DP_MPC算法的氢能源动力无人机能量管理 背景:随着氢燃料的开发,氢能源被应用到许多领域,但是由于其不能储能,所以通常与储能元件搭配使用,复合电源就涉及到能源分配问题,于是需要一个合适的能量管理算法 DP算法通过逆向迭代和正向寻优过程,可以找到全局最优的能量管理策略,但是系统外界是实时变化的,因此搭配MPC算法通过在线求解有限时域内的最优化问题,可以实时地调整控制策略以适应系统环境的变化 [1]能量管理方法包括DP_MPC在内,还有ECMS、状态机控制策略、经典 PID 控制、分频解耦控制、外部能量最大化控制策略进行对比 [2]文件中包含LSTM、DBO_BILSTM、VMD_ LSTM VMD_ SSA_LSTM VMD_ LSTM VMD_DBO_ LSTM等在内的各种未来速度预测器(离线预测); [3]资料有对应的参考说明书,方便学习;

氢能源无人机在天上飞的时候,最怕遇到什么?不是撞鸟也不是没信号,是动力系统突然掉链子。这玩意儿用氢燃料电池供电,但氢燃料有个硬伤——不能像电池那样存着电慢慢用。这就得搞复合电源系统,把燃料电池和超级电容或者锂电池捆在一起用。但问题来了:怎么让这俩兄弟合理分工?

这时候DP_MPC算法就派上用场了。举个接地气的例子,就像你开车从北京去上海,DP算法相当于提前把全程加油站位置、堵车路段都算好了给你规划最优路线,而MPC就是边开边看导航,遇到突发修路马上改道。这俩结合起来对付无人机的能源分配,效果比单用某一种算法靠谱得多。

先看DP算法的核心实现。下面这段Python伪代码展示了逆向迭代的过程:

def backward_dp(states): soc_grid = np.linspace(0.2, 0.8, 50) power_grid = np.linspace(0, 5000, 100) # 初始化代价矩阵 J = np.zeros((len(soc_grid), len(power_grid))) for k in reversed(range(time_steps)): for i, soc in enumerate(soc_grid): for j, power in enumerate(power_grid): # 燃料电池出力约束 fc_power = np.clip(power, 0, fc_max_power) # 超级电容补足缺口 sc_power = power - fc_power # 计算等效氢耗 hydrogen_consumption = fc_power * 0.0025 # SOC动态方程 next_soc = soc + (sc_power * delta_t) / sc_capacity # 状态转移代价 J[i,j] = hydrogen_consumption + gamma * J[next_state] return J

这段代码的关键在于状态离散化的粒度——太细了算到地老天荒,太粗了结果不精准。经验值是SOC(荷电状态)分50档,功率需求分100档,在普通笔记本上跑个十分钟能出结果。

基于DP_MPC算法的氢能源动力无人机能量管理 背景:随着氢燃料的开发,氢能源被应用到许多领域,但是由于其不能储能,所以通常与储能元件搭配使用,复合电源就涉及到能源分配问题,于是需要一个合适的能量管理算法 DP算法通过逆向迭代和正向寻优过程,可以找到全局最优的能量管理策略,但是系统外界是实时变化的,因此搭配MPC算法通过在线求解有限时域内的最优化问题,可以实时地调整控制策略以适应系统环境的变化 [1]能量管理方法包括DP_MPC在内,还有ECMS、状态机控制策略、经典 PID 控制、分频解耦控制、外部能量最大化控制策略进行对比 [2]文件中包含LSTM、DBO_BILSTM、VMD_ LSTM VMD_ SSA_LSTM VMD_ LSTM VMD_DBO_ LSTM等在内的各种未来速度预测器(离线预测); [3]资料有对应的参考说明书,方便学习;

到了MPC部分,画风突变。下面这个在线优化循环才是真·实战现场:

while flying: current_states = get_sensors_data() # 实时获取SOC、功率需求 predicted_power = lstm_predictor(speed_history) # 调用VMD_DBO_LSTM预测器 # 滚动时域优化 horizon = 10 # 预测未来10个时间步 mpc_problem = { 'objective': minimize(h2_consumption + soc_penalty), 'constraints': [ fc_power <= fc_max, sc_power <= sc_max, soc >= 0.2 ] } optimized_controls = solve_mpc(mpc_problem, current_states, predicted_power) apply_controls(optimized_controls[0]) # 仅执行第一步控制量 time.sleep(control_cycle) # 等下一个控制周期

这里有个隐藏技巧:MPC每次只执行第一拍的控制指令,然后重新规划。就像玩即时战略游戏,每半秒调整一次作战方案,永远用最新情报做决策。实测中发现,搭配VMDDBOLSTM预测器能把速度预测误差控制在3%以内,比直接用原始LSTM强一截。

对比老派的ECMS(等效燃油消耗最小法),DPMPC在突变负载场景下优势明显。上周拿大疆Matrice300改装的氢动力机做测试,在突然拉升高度时,ECMS控制的系统会出现0.5秒的功率缺口,而DPMPC靠着预测器提前0.8秒就开始给超级电容充电,动作丝滑得跟德芙巧克力似的。

不过这套算法也不是没有坑。新手最容易栽在状态空间设计上——有次实习生把SOC下限设成0,结果仿真时超级电容直接放到没电,无人机表演了个自由落体。现在我们的安全规则第一条就是:SOC硬限制必须设在20%-80%,物理世界可比数学模型残酷多了。

搞能源管理就像给无人机配了个贴身管家,既要精打细算省氢气,又要随时准备应对突发状况。那些开源的参考说明书里(比如NREL的H2Dynamics手册),藏着不少工程化实现的魔鬼细节。下次看到氢动力无人机在天上优雅盘旋,别忘了里面藏着多少这样的控制玄机。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1149945.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

电商抠图效率翻倍|使用CV-UNet大模型镜像实现自动化处理

电商抠图效率翻倍&#xff5c;使用CV-UNet大模型镜像实现自动化处理 TOC 1. 引言&#xff1a;电商图像处理的痛点与破局之道 在电商平台运营中&#xff0c;商品图片的质量直接影响转化率。传统的人工抠图方式不仅耗时耗力&#xff0c;还难以保证边缘细节的一致性&#xff0c;…

从零部署AutoGLM-Phone-9B|移动端90亿参数模型运行全步骤

从零部署AutoGLM-Phone-9B&#xff5c;移动端90亿参数模型运行全步骤 1. AutoGLM-Phone-9B 模型简介与部署价值 1.1 多模态轻量化大模型的技术定位 AutoGLM-Phone-9B 是基于智谱AI GLM架构深度优化的移动端专用多模态大语言模型&#xff0c;在保持90亿参数规模的同时&#x…

导师不会说的9款AI论文神器,巨鲸写作半天搞定全文!

开头&#xff1a;90%的学生不知道的论文“黑科技”&#xff0c;导师私藏的毕业捷径 你是否经历过这些绝望时刻&#xff1f; 熬夜一周写的初稿&#xff0c;被导师用红笔批满“逻辑混乱”“缺乏创新”&#xff0c;却不告诉你具体怎么改&#xff1b;为了降重&#xff0c;把“研究…

C# XML文件读取软件:支持自由定位与蛇形走位,主要应用于晶圆图谱识别

C#编写的一款读取xml文件的mapping图软件。 可以自由定位位置&#xff0c;统计数量&#xff0c;蛇形走位。 主要用在晶圆图谱识别。 基于对原始代码的深入分析&#xff0c;这是一套完整的晶圆测试Mapping图可视化与分析系统&#xff0c;主要用于半导体制造过程中的晶圆测试数据…

NPP 草原:Taullgarnsnaset,瑞典,1968-1969,R1

NPP Grassland: Tullgarnsnaset, Sweden, 1968-1969, R1 简介 该数据集包含三个 ACSII 文件&#xff08;.txt 格式&#xff09;。其中两个文件包含位于瑞典斯德哥尔摩附近 Tullgarnsnaset&#xff08;约北纬 59.20&#xff0c;东经 17.50&#xff09;的两个未放牧海滨草甸样地…

matlab仿真程序,二阶MASs,事件触发机制 这段代码是一个带有领导者的二阶多智能体的领导...

matlab仿真程序&#xff0c;二阶MASs&#xff0c;事件触发机制这段代码是一个带有领导者的二阶多智能体的领导跟随一致性仿真。以下是对代码的分析&#xff1a;1. 代码初始化了系统参数&#xff0c;包括邻接矩阵A、拉普拉斯矩阵L、系统的领导跟随矩阵H等。 2. 代码定义了一个二…

如何高效做中文情绪识别?试试这款轻量级CPU友好型大模型镜像

如何高效做中文情绪识别&#xff1f;试试这款轻量级CPU友好型大模型镜像 1. 引言&#xff1a;中文情感分析的现实挑战与新思路 在社交媒体监控、用户评论挖掘、舆情分析等实际业务场景中&#xff0c;中文情感分析已成为自然语言处理&#xff08;NLP&#xff09;的核心任务之一…

高精度中文文本匹配方案|基于GTE模型的WebUI与API双支持

高精度中文文本匹配方案&#xff5c;基于GTE模型的WebUI与API双支持 1. 项目背景与技术选型 在自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;语义相似度计算是搜索、推荐、问答系统和大模型增强检索&#xff08;RAG&#xff09;等任务的核心基础。传统关键词匹配…

2026最新CTF知识点网址汇总大全,零基础入门到精通,收藏这篇就够了

2026最新CTF知识点网址汇总大全&#xff0c;零基础入门到精通&#xff0c;收藏这篇就够了 全网最全CTF资源导航站&#x1f525;从入门到进阶&#xff0c;看这篇就够了 经常会有粉丝朋友后台私信评论留言想要CTF相关资料&#xff0c;大白也深知大家想在CTF大赛中叱咤风云却苦于…

高效中文情绪识别方案|CPU版大模型镜像一键启动

高效中文情绪识别方案&#xff5c;CPU版大模型镜像一键启动 1. 背景与需求&#xff1a;轻量级中文情感分析的工程挑战 在实际业务场景中&#xff0c;中文情感分析广泛应用于用户评论挖掘、客服质检、舆情监控等领域。尽管大模型在精度上表现优异&#xff0c;但多数依赖GPU部署…

在 SAP 系统中,寄售业务(Consignment) 和管道业务(Pipeline) 均属于供应商库存管理(Vendor-Managed Inventory, VMI) 范畴

在 SAP 系统中&#xff0c;寄售业务&#xff08;Consignment&#xff09; 和管道业务&#xff08;Pipeline&#xff09; 均属于供应商库存管理&#xff08;Vendor-Managed Inventory, VMI&#xff09; 范畴&#xff0c;核心是物料所有权在消耗前归供应商&#xff0c;消耗后才与…

中文情感分析实战|基于StructBERT大模型镜像快速部署

中文情感分析实战&#xff5c;基于StructBERT大模型镜像快速部署 1. 引言&#xff1a;为什么需要轻量高效的中文情感分析方案&#xff1f; 在当前自然语言处理&#xff08;NLP&#xff09;广泛应用的背景下&#xff0c;中文情感分析已成为智能客服、舆情监控、用户评论挖掘等…

语义相似度服务零报错部署|基于GTE-Base模型的WebUI可视化方案

语义相似度服务零报错部署&#xff5c;基于GTE-Base模型的WebUI可视化方案 在自然语言处理的实际应用中&#xff0c;判断两段文本是否“意思相近”是一项高频且关键的需求。无论是智能客服中的意图匹配、推荐系统中的内容去重&#xff0c;还是知识库问答的相似问题检索&#x…

2026年安徽省职业院校技能大赛(中职组) 电子数据取证技术与应用赛项规程

2024学年云南省职业院校技能大赛 “信息安全管理与评估”赛项 比赛样题任务书一、赛项名称二、竞赛目标三、竞赛方式与内容汇报模块&#xff1a;现场汇报展示&#xff08;占比 20%&#xff09;四、竞赛流程竞赛软件&#xff1a;五、赛场预案六、赛项安全七、竞赛须知八、申诉与…

sap中 为什么 rz11 修改了 rdisp/gui_auto_logout 当次有用,当sap服务器重新启动后 系统又该回原值了?

这种情况是完全正常的&#xff0c;其根本原因在于 RZ11 修改的是实例的运行时内存参数&#xff0c;而不是永久配置参数。下面为您详细解释一下原因和正确的做法&#xff1a;1. 原因分析&#xff1a;运行时参数 vs. 实例配置文件RZ11 的作用&#xff1a;RZ11 是一个用于 动态检查…

高精度中文语义计算方案|GTE模型镜像实现低延迟相似度推理

高精度中文语义计算方案&#xff5c;GTE模型镜像实现低延迟相似度推理 1. 引言&#xff1a;中文语义理解的现实挑战与GTE的破局之道 在智能客服、内容推荐、知识检索等实际业务场景中&#xff0c;如何准确判断两段中文文本的语义是否相近&#xff0c;一直是自然语言处理的核心…

如何精准提取PDF公式与表格?试试科哥开发的PDF-Extract-Kit镜像

如何精准提取PDF公式与表格&#xff1f;试试科哥开发的PDF-Extract-Kit镜像 1. 引言&#xff1a;PDF智能提取的痛点与解决方案 在科研、教育和工程领域&#xff0c;PDF文档中往往包含大量关键信息——数学公式、数据表格和专业图表。然而&#xff0c;传统方式从PDF中提取这些…

无需GPU!用StructBERT中文情感分析镜像实现高效情绪识别

无需GPU&#xff01;用StructBERT中文情感分析镜像实现高效情绪识别 1. 背景与痛点&#xff1a;传统情感分析的局限性 在自然语言处理&#xff08;NLP&#xff09;的实际应用中&#xff0c;情感分析&#xff08;Sentiment Analysis&#xff09;是一项高频需求。无论是电商平台…

具身新形态

具身新形态 2026年国际消费电子展&#xff08;CES&#xff09;作为全球消费电子领域的技术风向标&#xff0c;吸引了全球超4500家企业参展&#xff0c;而追觅科技以“具身智能”为核心的全品类产品矩阵成为此次展会的核心焦点&#xff0c;引发行业广泛热议与深度探讨。从可实现…

中文语义相似度计算实战|基于GTE大模型镜像快速搭建WebUI工具

中文语义相似度计算实战&#xff5c;基于GTE大模型镜像快速搭建WebUI工具 1. 引言&#xff1a;中文语义相似度的工程价值与挑战 在自然语言处理&#xff08;NLP&#xff09;的实际应用中&#xff0c;语义相似度计算是构建智能问答、文本去重、推荐系统和信息检索等场景的核心…