微服务分布式SpringBoot+Vue+Springcloud个性化课程推荐系统__

目录

      • 微服务分布式个性化课程推荐系统摘要
    • 开发技术
    • 源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

微服务分布式个性化课程推荐系统摘要

该系统基于SpringBoot、Vue.js和SpringCloud技术栈构建,采用微服务架构实现高可用、可扩展的个性化课程推荐功能。系统通过分布式部署提升性能,结合协同过滤与深度学习算法分析用户行为数据,实现精准推荐。

前端采用Vue.js框架,实现响应式布局与动态交互,优化用户体验。后端基于SpringBoot快速开发,通过SpringCloud实现服务注册发现、负载均衡与熔断机制,确保系统稳定性。

核心模块包括用户画像分析、课程推荐引擎与实时反馈系统。用户画像模块整合学习历史、偏好标签及社交行为,构建多维特征模型。推荐引擎结合基于内容的过滤与矩阵分解算法,动态调整权重以提高推荐准确率。

系统支持多终端访问,通过RESTful API与前端交互。数据存储采用MySQL集群与Redis缓存,兼顾事务一致性与查询效率。日志监控模块集成ELK技术栈,实现全链路追踪与异常预警。

测试结果表明,该系统在千级并发下响应时间低于500ms,推荐准确率达85%以上,适用于在线教育平台等场景,显著提升用户粘性与课程转化率。






开发技术

后端语言框架支持:
1 java(SSM/springboot/springcloud)-idea/eclipse
2.Nodejs+Vue.js -vscode
3.python(flask/django)–pycharm/vscode
4.php(thinkphp/laravel)-hbuilderx
前端开发框架:vue.js
数据库 mysql 版本不限
JDK版本不限,最低jdk1.8
技术栈:JAVA+Mysql+Springboot+Vue+Maven
数据库工具:Navicat/SQLyog都可以
数据库:mysql (版本不限)
MySQL还具备良好的可视化管理工具[8],MySQL Workbench,这些工具不仅提供了数据库设计、开发、管理和维护的全套解决方案,还能通过图形界面使数据库的管理变得简单易操作。这对于系统的开发和维护来说,意味着可以更高效地进行数据库的设计优化和日常管理,确保系统的稳定运行和数据的准确性。。
Spring框架是一种全面的编程和配置模型,为现代基于Java的企业应用提供了全面的基础架构支持。Spring的设计初衷是为了解决企业应用开发的复杂性,提供了一种更简单的方法来实现各个组件间的松耦合。这一点对于开发系统尤其重要,因为该系统需要集成多种技术和组件,包括数据库操作、Web服务和安全控制等。
在系统开发基础上,选择了Windows 10操作系统、Java编程语言和MySQL数据库,以及IDEA软件作为开发环境。这一选择基于对当前技术发展趋势的理解和对系统需求的分析,旨在利用这些成熟的技术和工具,提高开发效率,确保系统的稳定性和可扩展性。

Node.js是一种基于Chrome V8 JavaScript引擎的JavaScript运行环境,使得JavaScript能够在服务器端运行
Java
Java具有典型的继承、封装多态特征,可以使用类和接口,并进行输入输出数据流,支持多线程和反射、以及网络编程。Java语言的多态提供方法中的和复写,Java语言不仅仅可以支持后台框架的开发,也可以与web前端进行融合,支持常用的HTML标签和css、js、vue、node.js融合,开发出功能完备的公司应用开发。
Spring封装了很多的java类库文件,在开发过程中,不需要写太多复杂的类文件,只需要引用spring这个框架,就可以完成快速开发的需要,所以Java编程的逻辑代码就变得比较清晰,各层之间的解耦性也比较强,可重用性也得到了很好的发挥,使得开发难度也更加轻松容易,它的主要两个特性就是依赖注入、面向接口思想;(AOP)切面思想;
Vue免除了Javascript的dom操作,可以更快速的完成数据绑定。Vue实现了MVVM框架,通过后台的模型进行业务逻辑的处理,并将数据绑定到视图层中,在视图层绑定显示控件,将Model对象的数据绑定到页面控件中,实现数据的自动同步。当Model数据改变时,View页面可以根据数据自动发生改变。

源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

需要成品或者定制,加我们的时候,不满意的可以定制
文章最下方名片联系我即可~ 所有项目都经过测试完善,本系统包修改时间和标题,包安装部署运行调试

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1149873.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GTE中文语义相似度服务解析|集成可视化仪表盘与API接口

GTE中文语义相似度服务解析|集成可视化仪表盘与API接口 1. 项目背景与核心价值 在自然语言处理(NLP)领域,语义相似度计算是搜索、推荐、问答系统和文本聚类等任务的核心技术之一。传统的关键词匹配方法难以捕捉句子间的深层语义…

无需GPU!用中文情感分析镜像实现高效文本情绪判断

无需GPU!用中文情感分析镜像实现高效文本情绪判断 在自然语言处理(NLP)的实际应用中,情感分析是一项高频且实用的技术能力。无论是用户评论监控、舆情分析,还是客服系统自动响应,快速准确地识别文本情绪倾…

微服务分布式SpringBoot+Vue+Springcloud公司企业产品商城订单管理系统_

目录微服务分布式SpringBootVueSpringCloud企业商城系统核心功能模块技术架构优势系统特色开发技术源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!微服务分布式SpringBootVueSpringCloud企业商城系统 该系统基于微服务架构设计&#x…

GTE中文语义相似度服务解析|附WebUI可视化实战案例

GTE中文语义相似度服务解析|附WebUI可视化实战案例 1. 引言:为什么需要中文语义相似度计算? 在自然语言处理(NLP)的实际应用中,判断两段文本是否“意思相近”是一项基础而关键的任务。传统方法如关键词匹…

HY-MT1.5-1.8B轻量级翻译模型落地指南|边缘部署与实时应用

HY-MT1.5-1.8B轻量级翻译模型落地指南|边缘部署与实时应用 在多语言交互日益频繁的智能时代,低延迟、高精度的翻译能力正成为边缘计算和实时通信系统的核心需求。腾讯开源的 HY-MT1.5-1.8B 模型,作为混元翻译大模型系列中的轻量级主力&#…

2026 最全 JS 反混淆工具横评:jsunpark、jsnice、de4js、ob-decrypt…到底谁才是王者?

在前端安全对抗日益激烈的 2026 年,JavaScript 混淆技术已经从简单的“代码压缩”演进到了极其复杂的指令级膨胀、多层控制流平坦化、虚拟化保护(JS-VM)以及自监测动态加密。 对于爬虫架构师、高级逆向研究员来说,“反混淆”已不再…

基于ExpectedShortfall的指数期权量化交易策略

1. 传统VaR指标在尾部风险度量中的局限性 1.1 VaR指标的核心缺陷分析 在金融风险管理领域,Value at Risk(VaR)作为风险度量的传统工具,其核心逻辑是通过分位数估计特定置信水平下的最大可能损失。例如,95%置信水平的日…

微服务分布式SpringBoot+Vue+Springcloud公司企业员工考勤打卡加班管理系统_

目录微服务分布式考勤管理系统概述技术架构特点核心功能模块系统创新亮点应用价值体现开发技术源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!微服务分布式考勤管理系统概述 该系统基于SpringBootVueSpringCloud技术栈构建&#xff0c…

StructBERT中文情感分析镜像解析|CPU优化版快速上手指南

StructBERT中文情感分析镜像解析|CPU优化版快速上手指南 1. 背景与应用场景 随着社交媒体、电商平台和用户评论系统的普及,中文情感分析已成为自然语言处理(NLP)中最具实用价值的技术之一。无论是品牌舆情监控、客服自动化响应&…

语义检索实战:基于GTE中文向量模型快速构建相似度计算服务

语义检索实战:基于GTE中文向量模型快速构建相似度计算服务 1. 引言:从“找词”到“懂意”的语义跃迁 在传统信息检索系统中,用户输入关键词后,系统通过匹配文档中的字面词汇返回结果。这种关键词检索方式虽然实现简单&#xff0…

Tiobe-反映某个编程语言的热门程度的指标

https://www.tiobe.com/tiobe-index/ https://www.tiobe.com/

AutoGLM-Phone-9B核心架构揭秘|MoE与动态计算的端侧优化之道

AutoGLM-Phone-9B核心架构揭秘|MoE与动态计算的端侧优化之道 1. 端侧多模态大模型的技术挑战与破局思路 随着智能手机、可穿戴设备和边缘终端对AI能力的需求日益增长,如何在资源受限的设备上部署高性能大语言模型成为业界关注的核心问题。传统云端推理…

AutoGLM-Phone-9B模型部署秘籍|90亿参数多模态推理优化实践

AutoGLM-Phone-9B模型部署秘籍|90亿参数多模态推理优化实践 1. 引言:移动端大模型的轻量化挑战与机遇 随着多模态AI应用在智能终端设备上的快速普及,如何在资源受限的移动环境中实现高效、低延迟的推理成为工程落地的关键瓶颈。传统大语言模…

如何在浏览器里体验 Windows在线模拟器:2026最新在线windows模拟器资源合集与技术揭秘

如何在浏览器里体验 Windows在线模拟器:2026最新在线windows模拟器资源合集与技术揭秘 在现代浏览器强大的 Web 技术支持下,我们不仅可以浏览网页、看视频,还能在浏览器中模拟运行操作系统(OS)界面甚至部分功能。这类…

微服务分布式SpringBoot+Vue+Springcloud公司企业财务资产员工考勤管理系统_

目录 系统概述技术架构核心功能模块系统优势应用场景 开发技术源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式! 系统概述 该系统基于微服务架构与分布式技术,整合SpringBoot、Vue.js和SpringCloud框架,为企业提供…

告别复杂环境配置|一键启动中文情感分析服务(StructBERT镜像版)

告别复杂环境配置|一键启动中文情感分析服务(StructBERT镜像版) 1. 背景与痛点:中文情感分析的“入门即劝退” 在自然语言处理(NLP)的实际应用中,中文情感分析是企业级项目中最常见的需求之一…

微服务分布式SpringBoot+Vue+Springcloud汉语等级考试Hsk学习平台_

目录微服务架构设计技术栈整合HSK考试核心功能自适应学习路径运维与扩展性开发技术源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!微服务架构设计 采用SpringCloud微服务架构实现模块化开发,包含用户服务、考试服务、学习资…

中文文本情绪判断新选择|集成WebUI的StructBERT轻量级镜像实践

中文文本情绪判断新选择|集成WebUI的StructBERT轻量级镜像实践 1. 背景与痛点:中文情感分析的工程落地挑战 在自然语言处理(NLP)的实际应用中,中文情感分析是企业用户洞察、舆情监控、客服质检等场景的核心技术之一。…

从WMT25夺冠到工业落地:HY-MT1.5翻译模型核心优势揭秘

从WMT25夺冠到工业落地:HY-MT1.5翻译模型核心优势揭秘 随着全球多语言交流需求的持续爆发,传统机器翻译系统在专业性、上下文理解与格式保留等方面的局限日益凸显。腾讯推出的混元翻译大模型 1.5 版本(HY-MT1.5),基于…

如何高效提取PDF公式与表格?试试科哥开发的PDF-Extract-Kit镜像工具

如何高效提取PDF公式与表格?试试科哥开发的PDF-Extract-Kit镜像工具 1. 引言:PDF内容提取的痛点与需求 在科研、教育和工程文档处理中,PDF文件常包含大量数学公式、复杂表格和图文混排内容。传统手动复制方式不仅效率低下,还极易…