AI新范式!ReAct Agent架构详解,让你的大模型不再“幻觉“满天飞,小白也能秒变大神!

在众多前沿架构中,ReAct Agent(ReAct 代理)作为一种将“推理”(Reasoning)与“行动”(Acting)深度结合的强大范式,正在重新定义机器解决复杂问题的方式。与其让 AI 盲目地猜测答案,ReAct 架构赋予了它像人类一样步步为营、逻辑缜密的思维能力。

什么是 ReAct Agent?

ReAct 的核心理念在于它的名字本身:Reasoning(推理)+ Acting(行动)。这是一种让机器能够以逻辑化、分步骤的方式解决问题的方法论。

传统的语言模型往往倾向于直接生成答案,这种“直觉式”的回答在面对需要实时数据或复杂计算的问题时,容易产生幻觉或错误。相比之下,ReAct Agent 拒绝直接跳到结论。它模拟了人类专家的解决问题路径:先思考可能的情况,基于推理采取行动,评估行动的结果,并根据反馈调整下一步的策略。这种持续的循环使得 AI 能够做出更精准、更深思熟虑的决策。

核心工作流

ReAct Agent 的强大之处在于其内部运转的动态循环,这个过程通常被称为 “ReAct 流程”。在这个流程中,模型不再是一个静态的文本生成器,而是一个在环境中不断探索的智能体。

这个循环主要包含四个关键阶段:

• 思考(Thought): 当接收到任务时,Agent 首先会问自己:“下一步最好的操作是什么?”它会分解问题,制定计划,而不是急于回答。

• 行动(Action): 基于之前的思考,Agent 会执行具体的操作。这不仅限于文本生成,更包括使用工具,比如调用搜索引擎、运行代码或查询数据库。

• 观察(Observation): 行动之后,Agent 会“看”发生了什么。它会接收工具返回的数据或环境的反馈,这是验证推理是否正确的关键步骤。

• 反思与响应(Reflect & Respond): Agent 利用观察到的结果再次进行推理。如果信息不足,它会进入下一个“思考-行动”循环;如果信息充足且确信,它才会交付最终的答案。

架构解析

从系统架构的角度来看,ReAct Agent 的运作机制既严谨又灵活。

在高层架构中,我们可以清晰地看到一条主线:从“用户提示词(User Prompt)”开始,系统进入核心的处理黑盒。在这个黑盒中,“思考”、“行动”和“观察”构成了一个三角形的闭环结构。这个闭环会不断滚动,直到任务完成(Finished),最终输出结果。这是一种以目标为导向的宏观视角,强调了迭代的重要性。

而深入到底层架构,我们会发现大语言模型(LLM)在其中扮演了“大脑”的中枢角色。流程始于用户输入,信息随后传入 LLM。此时,LLM 面临一个关键的决策点:“是否决定采取行动?”

如果决定行动(Yes): LLM 会发出指令运行特定的工具(Run the Tool)。工具执行后产生的输出(Tool Output)会作为新的信息回传给 LLM。LLM 消化这些新信息后,再次进行判断。

如果不采取行动(No): 这意味着 LLM 认为当前掌握的信息已经足够回答用户的问题,或者任务已经完成。此时,它会跳出循环,直接生成最终答案(Final Answer)。

为什么 ReAct 很重要?

ReAct 架构的出现解决了大模型应用中的几个痛点。首先,它极大地提高了答案的可信度。通过引入“观察”环节,模型可以利用外部工具验证事实,减少了一本正经胡说八道的概率。其次,它增强了模型的可解释性。由于每一步都有明确的“思考”记录,人类用户可以清晰地看到 AI 是如何一步步推导出结论的,而不是面对一个黑箱。

ReAct Agent 代表了 AI 从“只会说话”向“既会思考又会做事”的进化。通过将逻辑推理的深度与执行行动的广度相结合,它展示了一个更加智能、自主且可靠的未来人工智能形态。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1149402.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MiDaS部署教程:CPU环境下实现高精度深度热力图

MiDaS部署教程:CPU环境下实现高精度深度热力图 1. 引言 1.1 AI 单目深度估计 —— 让2D图像“看见”3D世界 在计算机视觉领域,单目深度估计(Monocular Depth Estimation) 是一项极具挑战性的任务:仅凭一张普通的2D照…

小模型大能量|HY-MT1.5-1.8B为何超越商业翻译API?

小模型大能量|HY-MT1.5-1.8B为何超越商业翻译API? 1. 引言:轻量级翻译模型的崛起 在机器翻译领域,参数规模长期被视为决定翻译质量的核心指标。然而,随着算法优化、训练策略和压缩技术的进步,这一认知正在…

3D感知MiDaS保姆级指南:零基础快速上手

3D感知MiDaS保姆级指南:零基础快速上手 1. 引言:AI 单目深度估计的现实意义 在计算机视觉领域,从单张2D图像中恢复3D空间结构一直是极具挑战性的任务。传统方法依赖多视角几何或激光雷达等硬件设备,成本高且部署复杂。而近年来&…

边缘设备也能跑翻译大模型?HY-MT1.5-1.8B镜像实测揭秘

边缘设备也能跑翻译大模型?HY-MT1.5-1.8B镜像实测揭秘 1. 引言:轻量级大模型如何改变边缘翻译格局 在全球化与移动化并行发展的今天,实时、低延迟的多语言翻译能力正从“增值服务”演变为“基础刚需”。无论是智能眼镜、手持翻译机&#xf…

人名地名机构名自动高亮?试试这款AI实体侦测镜像

人名地名机构名自动高亮?试试这款AI实体侦测镜像 在信息爆炸的时代,非结构化文本数据(如新闻、社交媒体内容、企业文档)呈指数级增长。如何从这些海量文本中快速提取关键信息——尤其是人名、地名、机构名等命名实体,…

单目深度估计技术解析:MiDaS模型原理

单目深度估计技术解析:MiDaS模型原理 1. 引言:从2D图像到3D空间的AI视觉革命 在计算机视觉领域,如何让机器“理解”三维世界一直是一个核心挑战。传统方法依赖双目摄像头或多传感器融合来获取深度信息,但这些方案成本高、部署复…

Stable Diffusion+分类器联动教程:云端GPU 5分钟出图,1小时1块

Stable Diffusion分类器联动教程:云端GPU 5分钟出图,1小时1块 1. 为什么设计师需要这个方案? 作为一名设计师,你可能经常需要为产品或内容创建各种分类标签的创意图片。传统方式需要手动设计每个标签,耗时耗力。而St…

MiDaS单目深度估计实战教程:从零部署到深度热力图生成

MiDaS单目深度估计实战教程:从零部署到深度热力图生成 1. 引言:走进3D感知的AI视觉世界 在计算机视觉领域,如何让AI“理解”二维图像背后的三维空间结构,一直是极具挑战性的课题。传统方法依赖双目立体视觉或多传感器融合&#…

分类器效果对比:开源vs商用API,云端GPU测试省下2000元

分类器效果对比:开源vs商用API,云端GPU测试省下2000元 引言 作为初创公司的CTO,你是否也面临这样的困境:需要为业务选择一个合适的分类方案,既想测试开源模型的灵活性,又需要考虑商用API的稳定性&#xf…

零基础玩转MiDaS:单目深度估计快速上手

零基础玩转MiDaS:单目深度估计快速上手 1. 引言:什么是单目深度估计? 在计算机视觉领域,从一张普通2D图像中感知3D空间结构一直是极具挑战性的任务。传统方法依赖双目摄像头或多视角几何计算,而近年来,随…

[特殊字符]AI测试革命性突破!四层架构让测试效率暴涨300%,小白也能上手的企业级落地指南![特殊字符]

在软件测试领域,“效率低、覆盖窄、适应性差” 的痛点长期存在:某大型电商平台曾因回归测试用例编写滞后,导致新功能上线延迟 3 天;某金融机构因手工测试遗漏边界场景,引发线上交易故障。 而 AI 技术的成熟&#xff0…

33语种互译新标杆|腾讯开源HY-MT1.5-7B翻译模型实战指南

33语种互译新标杆|腾讯开源HY-MT1.5-7B翻译模型实战指南 在多语言交流日益频繁的今天,高质量、低延迟的机器翻译系统已成为跨语言沟通的核心基础设施。腾讯混元团队推出的 HY-MT1.5-7B 翻译模型,正是面向这一需求打造的新一代大模型翻译解决…

万能分类器对抗样本:云端攻防测试提升模型鲁棒性

万能分类器对抗样本:云端攻防测试提升模型鲁棒性 1. 引言:为什么需要对抗样本测试? 在AI安全领域,对抗样本就像黑客用来测试系统漏洞的特殊"钥匙"。它们是通过精心设计的输入数据(如图片、文本&#xff09…

3D视觉AI实战:MiDaS模型与ROS系统集成

3D视觉AI实战:MiDaS模型与ROS系统集成 1. 引言:迈向真实世界的3D感知 1.1 单目深度估计的技术演进 在机器人导航、自动驾驶和增强现实等前沿领域,三维空间感知能力是实现环境理解的核心前提。传统方案依赖激光雷达或多目相机,成…

AI分类模型压缩:万能分类器云端量化蒸馏全攻略

AI分类模型压缩:万能分类器云端量化蒸馏全攻略 引言:为什么我们需要模型压缩? 想象一下,你训练了一个超级聪明的AI大脑,但它体积太大,就像一头大象——虽然很聪明,但没法塞进你的手机或智能手…

震惊!Cursor这波操作让AI编程助手token消耗减少46.9%,小白也能秒懂的上下文工程架构大揭秘

一、背景:为什么需要动态上下文发现 编码 Agent 正在快速改变软件构建方式。其能力提升来自两方面:更强的 Agent 模型 更好的上下文工程(Context Engineering)。 Cursor 的 Agent 框架(agent harness)会…

【Java毕设全套源码+文档】基于springboot的智能垃圾分类系统设计与实现(丰富项目+远程调试+讲解+定制)

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围:&am…

分类模型效果提升50%:万能分类器调参+云端GPU实测

分类模型效果提升50%:万能分类器调参云端GPU实测 引言 作为一名算法工程师,你是否经历过这样的痛苦:为了优化分类模型参数,每次实验都要在本地机器上跑2小时,一天最多只能尝试5-6组参数组合?而当你终于找…

AI分类器调参技巧:云端GPU按需付费,试错成本直降80%

AI分类器调参技巧:云端GPU按需付费,试错成本直降80% 1. 为什么你需要云端GPU调参? 作为一名算法工程师,你是否经常遇到这些问题: - 本地GPU资源紧张,排队等待严重影响项目进度 - 调参实验需要反复尝试&am…

【Java毕设全套源码+文档】基于springboot的中药材进存销管理系统设计与实现(丰富项目+远程调试+讲解+定制)

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围:&am…