【值得收藏】AI智能体(AI Agent)实战指南:从底层原理到安全运行

AI智能体(AI Agent)是能代表用户独立完成任务的系统,与传统LLM应用不同,它能动态决策、调用工具并管理状态。文章详细介绍了智能体的定义、特征、构建时机、设计基础、核心组件、编排模式和护栏体系,并通过LangGraph框架提供了最小可运行的智能体示例,帮助读者从理论到实践全面理解AI智能体技术。

一、什么是智能体(Agent)?

1. 核心定义

智能体(Agent)是一个能够代表用户,以高度独立性完成任务(Workflow) 的系统。它能理解用户目标,自主选择行动路径,并利用外部工具执行任务。

简单来说,它是“能帮你做事的AI”,而不仅仅是“能和你聊天的AI”。

比如你告诉它“帮我分析最新销售数据,并生成周报”,它不会仅仅生成报告模板,而会:

1.查询数据库 → 2. 分析关键指标 → 3. 生成图表 → 4. 写出总结报告 → 5. 邮件发送。

这就是一个完整的 Agent工作流闭环。

2. 与传统LLM应用的区别

很多人把一个能回答问题的聊天机器人当成智能体,这其实是个误区。

智能体与普通LLM应用最大的区别在于:

项目普通LLM应用智能体(Agent)
核心能力生成文本回答完成任务与执行工作流
决策方式静态、被动响应动态、主动决策
工具调用通常无可调用外部API、数据库、系统
状态管理单轮多轮、自主状态追踪
错误处理无反馈能主动识别并纠错

真正的Agent不仅会“说”,更会“做”。

3. 智能体的三大特征

(1)LLM驱动决策

智能体的“大脑”是LLM(如GPT、Claude、DeepSeek等),它会持续判断:

  • 当前任务是否完成;
  • 哪个工具最合适;
  • 结果是否异常;
  • 失败时是否应重试或终止。
(2)具备工具使用能力

它能访问数据库、API、文件系统、甚至调用其他Agent。

工具就像智能体的“手脚”,赋予它真正的行动力。

(3)运行在安全护栏之内

智能体在设计上必须有“边界”——确保不会调用危险API、不会泄露隐私数据,也不会乱执行高风险操作。

二、何时应该构建智能体?

一个非常实用的判断标准是:

如果问题可以用规则穷尽描述,就不要用Agent;如果问题充满模糊性和上下文判断,那就该考虑Agent。

典型场景举例:支付欺诈分析

传统规则引擎就像一份“条件清单”:

若金额>10,000 且 IP 异常 → 触发警报。

但智能体像一个经验丰富的调查员,它能结合交易时间、用户历史行为、语言描述等上下文因素做综合判断。即使数据没有明显异常,它也能感知出“可疑”的行为模式。

这种场景下,规则系统会“漏判”,而Agent能“察觉”。

三、智能体设计基础

一个标准的Agent系统由三部分组成:

  1. 模型(Model):负责理解任务、推理与决策。
  2. 工具(Tools):让Agent能与外界交互(如数据库、API、文件系统)。
  3. 指令(Instructions):定义Agent该如何执行工作流。

我们先看一个结构化示例:

# 以LangGraph为例 from langgraph.graph import StateGraph, END from langchain_community.llms import ChatOpenAI llm = ChatOpenAI(model="gpt-4o-mini") # 定义最小状态 class AgentState: task: str result: str | None # 定义执行节点 def do_task(state: AgentState): response = llm.invoke(f"帮我完成这个任务: {state.task}") return AgentState(task=state.task, result=response.content) # 构建智能体图 graph = StateGraph(AgentState) graph.add_node("executor", do_task) graph.set_entry_point("executor") graph.add_edge("executor", END) app = graph.compile() # 测试运行 print(app.invoke(AgentState(task="生成一份销售周报")).result)

这就是一个最小可运行的智能体雏形:

你输入一个任务,它会自动调用大模型完成整个流程。

四、核心组件详解

1. 模型选择(Selecting your models)

智能体的核心是LLM,而不是盲目追求“最强模型”。

选择模型的关键在于平衡准确率、速度与成本:

  • 原型阶段:先用顶级模型(如GPT-4、Claude 3)打样,验证逻辑;
  • 优化阶段:用更小模型(如DeepSeek-R1、Qwen2.5)替代部分流程;
  • 生产阶段:按任务类型动态调度不同模型。

实用建议:

  • 对每类任务建立性能评估指标;
  • 保证关键节点高质量;
  • 用小模型优化边缘任务。

2. 定义工具(Defining Tools)

智能体真正的价值来自它能“动手”。

工具可分三类:

类型作用示例
数据工具检索信息数据库查询、PDF解析、网页搜索
行动工具执行操作发送邮件、更新CRM、生成报告
编排工具控制流程调用其他Agent,协同任务

最佳实践:

  • 工具必须接口清晰、有文档、有测试;
  • 输出格式要标准化;
  • 工具可复用、可组合。

例如,我们定义一个工具来查询本地文件内容:

from langchain.tools import tool @tool def read_local_file(filename: str): """读取指定文件内容""" with open(filename, 'r', encoding='utf-8') as f: return f.read()

然后在智能体中调用:

content = read_local_file("sales_data.txt") llm.invoke(f"请根据以下内容生成分析报告:\n{content}")

3. 配置指令(Configuring Instructions)

Prompt(提示词)是智能体的“行动指南”。

好的指令能让Agent变得“稳、准、懂边界”。

编写技巧:

  1. 从已有的业务文档或标准流程出发;
  2. 将复杂任务拆分为明确步骤;
  3. 明确定义每一步的输出;
  4. 考虑边缘场景与异常处理。

例如,生成财务报告的指令可以这样写:

instructions = """ 你是一个财务分析智能体,目标是基于销售数据生成一份分析报告。 步骤: 1. 读取销售数据。 2. 提取关键指标(销售额、利润、成本)。 3. 识别趋势并分析原因。 4. 输出一份结构化报告(标题、摘要、图表建议、结论)。 """

五、智能体的编排模式(Orchestration)

编排,就是智能体的“组织架构”。

1. 单智能体系统(Single-agent system)

最基础的形态:一个Agent、多个工具,在循环中执行任务。

优点:

  • 简单;
  • 易维护;
  • 适合小规模自动化。

典型代码:

while not task_done: next_action = llm.invoke(f"当前任务状态:{state},下一步应该执行什么?") execute_tool(next_action)

2. 多智能体系统(Multi-agent system)

当任务过于复杂,就需要“团队作战”。

两种模式:

(1)管理者模式(Manager Pattern)

一个中央智能体(Manager)统筹多个子智能体。

比如:翻译Agent、分析Agent、报告Agent。

from langgraph.graph import StateGraph, END def manager(state): task_type = llm.invoke(f"请判断任务类型: {state.task}") if "翻译" in task_type: return AgentState(task="翻译", result=translator.invoke(state)) elif "分析" in task_type: return AgentState(task="分析", result=analyzer.invoke(state)) else: return AgentState(task=state.task, result="任务不匹配") graph = StateGraph(AgentState) graph.add_node("manager", manager) graph.set_entry_point("manager") graph.add_edge("manager", END)
(2)去中心化模式(Decentralized Pattern)

每个智能体都是独立节点,通过“移交(Handoff)”机制相互协作。

例如客服系统中,分流Agent判断问题类型后,将任务转交给售后或技术支持Agent。

六、护栏体系(Guardrails)

没有护栏的智能体,就像无人驾驶汽车没刹车。

护栏的作用是限制智能体的行为边界,确保安全、合规、稳定。

常见类型:

  • 安全分类器:检测越狱、提示注入;
  • PII过滤器:防止隐私泄露;
  • 工具安全分级:限制高风险操作;
  • 输出验证:确保生成内容合法;
  • 人工干预触发器:在失败或高风险任务时让人类接管。

在LangGraph中,我们可以这样实现:

def pii_filter(output): if "身份证" in output or "手机号" in output: raise ValueError("检测到敏感信息,输出被拦截。") return output

每次模型输出后执行该函数即可形成安全闭环。

七、总结

智能体的本质,不是聊天,而是行动。

它能在模糊场景中理解目标、做出判断、执行步骤、纠错反馈,最终帮人类完成工作。

构建智能体的正确路线图是:

  1. 打好三要素基础(模型、工具、指令);
  2. 选择适合的编排模式(单体或多体);
  3. 构建安全护栏;
  4. 小步迭代、持续验证。

未来每一个企业、每一个岗位,都会有属于自己的“数字助手”。

而理解今天的这些原理,就是你通向“AI工作流时代”的第一步。

小白/程序员如何系统学习大模型LLM?

作为在一线互联网企业深耕十余年的技术老兵,我经常收到小白和程序员朋友的提问:“零基础怎么入门大模型?”“自学没有方向怎么办?”“实战项目怎么找?”等问题。难以高效入门。

这里为了帮助大家少走弯路,我整理了一套全网最全最细的大模型零基础教程。涵盖入门思维导图、经典书籍手册、实战视频教程、项目源码等核心内容。免费分享给需要的朋友!

👇👇扫码免费领取全部内容👇👇

1、我们为什么要学大模型?

很多开发者会问:大模型值得花时间学吗?答案是肯定的——学大模型不是跟风追热点,而是抓住数字经济时代的核心机遇,其背后是明确的行业需求和实打实的个人优势:

第一,行业刚需驱动,并非突发热潮。大模型是AI规模化落地的核心引擎,互联网产品迭代、传统行业转型、新兴领域创新均离不开它,掌握大模型就是拿到高需求赛道入场券。

第二,人才缺口巨大,职业机会稀缺。2023年我国大模型人才缺口超百万,2025年预计达400万,具备相关能力的开发者岗位多、薪资高,是职场核心竞争力。

第三,技术赋能增效,提升个人价值。大模型可大幅提升开发效率,还能拓展职业边界,让开发者从“写代码”升级为“AI解决方案设计者”,对接更高价值业务。

对于开发者而言,现在入门大模型,不仅能搭上行业发展的快车,还能为自己的职业发展增添核心竞争力——无论是互联网大厂的AI相关岗位,还是传统行业的AI转型需求,都在争抢具备大模型技术能力的人才。

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

2、大模型入门到实战全套学习大礼包分享

最后再跟大家说几句:只要你是真心想系统学习AI大模型技术,这份我耗时许久精心整理的学习资料,愿意无偿分享给每一位志同道合的朋友。

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

部分资料展示

2.1、 AI大模型学习路线图,厘清要学哪些

对于刚接触AI大模型的小白来说,最头疼的问题莫过于“不知道从哪学起”,没有清晰的方向很容易陷入“东学一点、西补一块”的低效困境,甚至中途放弃。

为了解决这个痛点,我把完整的学习路径拆解成了L1到L4四个循序渐进的阶段,从最基础的入门认知,到核心理论夯实,再到实战项目演练,最后到进阶优化与落地,每一步都明确了学习目标、核心知识点和配套实操任务,带你一步步从“零基础”成长为“能落地”的大模型学习者。后续还会陆续拆解每个阶段的具体学习内容,大家可以先收藏起来,跟着路线逐步推进。

L1级别:大模型核心原理与Prompt

L1阶段:将全面介绍大语言模型的基本概念、发展历程、核心原理及行业应用。从A11.0到A12.0的变迁,深入解析大模型与通用人工智能的关系。同时,详解OpenAl模型、国产大模型等,并探讨大模型的未来趋势与挑战。此外,还涵盖Pvthon基础、提示工程等内容。
目标与收益:掌握大语言模型的核心知识,了解行业应用与趋势;熟练Python编程,提升提示工程技能,为AI应用开发打下坚实基础。

L2级别:RAG应用开发工程

L2阶段:将深入讲解AI大模型RAG应用开发工程,涵盖Naive RAGPipeline构建、AdvancedRAG前治技术解读、商业化分析与优化方案,以及项目评估与热门项目精讲。通过实战项目,提升RAG应用开发能力。

目标与收益:掌握RAG应用开发全流程,理解前沿技术,提升商业化分析与优化能力,通过实战项目加深理解与应用。

L3级别:Agent应用架构进阶实践

L3阶段:将 深入探索大模型Agent技术的进阶实践,从Langchain框架的核心组件到Agents的关键技术分析,再到funcation calling与Agent认知框架的深入探讨。同时,通过多个实战项目,如企业知识库、命理Agent机器人、多智能体协同代码生成应用等,以及可视化开发框架与IDE的介绍,全面展示大模型Agent技术的应用与构建。

目标与收益:掌握大模型Agent技术的核心原理与实践应用,能够独立完成Agent系统的设计与开发,提升多智能体协同与复杂任务处理的能力,为AI产品的创新与优化提供有力支持。

L4级别:模型微调与私有化大模型

L4级别:将聚焦大模型微调技术与私有化部署,涵盖开源模型评估、微调方法、PEFT主流技术、LORA及其扩展、模型量化技术、大模型应用引警以及多模态模型。通过chatGlM与Lama3的实战案例,深化理论与实践结合。

目标与收益:掌握大模型微调与私有化部署技能,提升模型优化与部署能力,为大模型项目落地打下坚实基础。

2.2、 全套AI大模型应用开发视频教程

从入门到进阶这里都有,跟着老师学习事半功倍。

2.3、 大模型学习书籍&文档

收录《从零做大模型》《动手做AI Agent》等经典著作,搭配阿里云、腾讯云官方技术白皮书,帮你夯实理论基础。

2.4、AI大模型最新行业报告

2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

2.5、大模型大厂面试真题

整理了百度、阿里、字节等企业近三年的AI大模型岗位面试题,涵盖基础理论、技术实操、项目经验等维度,每道题都配有详细解析和答题思路,帮你针对性提升面试竞争力。

【大厂 AI 岗位面经分享(107 道)】

【AI 大模型面试真题(102 道)】

【LLMs 面试真题(97 道)】

2.6、大模型项目实战&配套源码

学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。

适用人群

四阶段学习规划(共90天,可落地执行)
第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范
第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署
第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建
第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型

  • 带你了解全球大模型

  • 使用国产大模型服务

  • 搭建 OpenAI 代理

  • 热身:基于阿里云 PAI 部署 Stable Diffusion

  • 在本地计算机运行大模型

  • 大模型的私有化部署

  • 基于 vLLM 部署大模型

  • 案例:如何优雅地在阿里云私有部署开源大模型

  • 部署一套开源 LLM 项目

  • 内容安全

  • 互联网信息服务算法备案

  • 👇👇扫码免费领取全部内容👇👇

3、这些资料真的有用吗?

这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1148891.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Rembg WebUI快捷键:提升操作效率的技巧

Rembg WebUI快捷键:提升操作效率的技巧 1. 智能万能抠图 - Rembg 在图像处理领域,精准、高效地去除背景是许多应用场景的核心需求——无论是电商产品上架、设计素材制作,还是AI内容生成前的预处理。传统手动抠图耗时耗力,而基于…

Qwen2.5-7B大模型技术揭秘|编程、数学与多语言能力全面提升

Qwen2.5-7B大模型技术揭秘|编程、数学与多语言能力全面提升 一、引言:Qwen2.5-7B的技术演进背景 随着大语言模型在自然语言理解、代码生成和多模态任务中的广泛应用,阿里云推出的 Qwen2.5 系列再次将开源模型的能力推向新高度。其中&#xff…

Qwen2.5-7B + vLLM:构建高性能大模型服务的正确姿势

Qwen2.5-7B vLLM:构建高性能大模型服务的正确姿势 一、引言:为何需要高效的大模型推理架构? 随着大语言模型(LLM)在自然语言理解、代码生成、数学推理等任务中的广泛应用,如何将这些参数量动辄数十亿的模型…

轻松实现长文本生成|基于Qwen2.5-7B镜像的结构化输出实践

轻松实现长文本生成|基于Qwen2.5-7B镜像的结构化输出实践 在大语言模型(LLM)快速发展的今天,如何高效部署并利用先进模型进行长文本生成与结构化输出已成为开发者关注的核心问题。阿里云开源的 Qwen2.5-7B-Instruct 模型凭借其强…

轻松实现长文本生成|基于Qwen2.5-7B镜像的结构化输出实践

轻松实现长文本生成|基于Qwen2.5-7B镜像的结构化输出实践 在大语言模型(LLM)快速发展的今天,如何高效部署并利用先进模型进行长文本生成与结构化输出已成为开发者关注的核心问题。阿里云开源的 Qwen2.5-7B-Instruct 模型凭借其强…

Rembg抠图应用:电商促销图制作指南

Rembg抠图应用:电商促销图制作指南 1. 引言 1.1 业务场景描述 在电商平台的日常运营中,高质量的商品展示图是提升转化率的关键因素之一。然而,大量商品图片往往带有复杂背景、阴影或杂乱元素,难以直接用于主图、详情页或促销海…

AI抠图新高度:Rembg技术解析与实战应用

AI抠图新高度:Rembg技术解析与实战应用 1. 引言:智能万能抠图的时代来临 在图像处理领域,背景去除(即“抠图”)一直是核心需求之一。传统方法依赖人工精细绘制蒙版或使用Photoshop等工具进行复杂操作,耗时…

H5交互设计:从策划到上线的实用方法论与避坑要点

做了7年H5设计,见过太多“为炫酷而炫酷”的翻车案例——比如加了5秒开场动画,用户还没看到核心信息就划走;比如把报名按钮藏在第三屏,转化率低到1%;再比如安卓机上字体乱码,iOS上动画卡顿。其实H5的核心从来…

ResNet18实战案例:智能相册开发,云端GPU省心方案

ResNet18实战案例:智能相册开发,云端GPU省心方案 引言:为什么选择ResNet18做智能相册? 想象一下,你手机里有5000张照片,想快速找出所有"海边度假"或"生日派对"的照片。手动翻找可能要…

基于Qwen2.5-7B的高性能推理服务搭建:vLLM + OpenResty最佳实践

基于Qwen2.5-7B的高性能推理服务搭建:vLLM OpenResty最佳实践 一、引言:为何需要高并发大模型推理架构? 随着大语言模型(LLM)在实际业务场景中的广泛应用,单一模型实例已难以满足高并发、低延迟的服务需求…

收藏!AI大模型人才缺口超千万,6岗抢1人,00后硕士入职腾讯年薪50万起

一位上海交大毕业的00后AI从业者直言:“24岁硕士毕业就能拿到50万年薪,按照行业晋升节奏,30岁晋升到P7职级时,年薪百万不是问题。” 这位年轻从业者今年成功入职腾讯,成为AI算法工程师,搭上了AI风口的快车&…

ResNet18物体识别实战:云端GPU 10分钟部署,2块钱玩整天

ResNet18物体识别实战:云端GPU 10分钟部署,2块钱玩整天 1. 引言:为什么选择ResNet18? 作为一名产品经理,当你需要评估ResNet18能否用于智能相册项目时,最头疼的莫过于没有GPU服务器。传统方案要么花大价钱…

没N卡能用ResNet18吗?云端GPU解决方案,低成本体验

没N卡能用ResNet18吗?云端GPU解决方案,低成本体验 1. 为什么ResNet18通常需要NVIDIA显卡? ResNet18作为经典的深度学习模型,在图像分类任务中表现出色。但很多教程都会提到一个硬性要求:必须使用NVIDIA显卡&#xff…

基于Qwen2.5-7B的高效推理方案|vLLM集成详解

基于Qwen2.5-7B的高效推理方案|vLLM集成详解 随着大语言模型在自然语言理解、代码生成和多语言支持等方面的持续进化,Qwen2.5-7B 作为通义千问系列中性能卓越的开源模型之一,凭借其强大的指令遵循能力、长上下文处理(最高128K to…

Rembg抠图性能调优:内存与CPU平衡

Rembg抠图性能调优:内存与CPU平衡 1. 智能万能抠图 - Rembg 在图像处理和内容创作领域,自动去背景(Background Removal)是一项高频且关键的需求。无论是电商商品图精修、社交媒体素材制作,还是AI生成内容的后处理&am…

智能抠图Rembg:电子产品去背景技巧

智能抠图Rembg:电子产品去背景技巧 1. 引言:智能万能抠图 - Rembg 在电商、产品展示、UI设计等场景中,高质量的图像去背景处理是提升视觉表现力的关键环节。传统手动抠图耗时耗力,而基于AI的自动抠图技术正逐步成为主流。其中&a…

ResNet18实时视频分析:云端GPU处理1080P无压力

ResNet18实时视频分析:云端GPU处理1080P无压力 引言 在安防监控、智慧城市等场景中,实时视频分析是核心需求之一。想象一下,当我们需要从监控画面中快速识别异常行为、统计人流量或检测危险物品时,传统人工盯屏的方式不仅效率低…

【CTF 备赛宝典】全题型答案 + 解题流程拆解:从隐写术到漏洞利用,备赛天花板级教程

此题解仅为部分题解,包括: 【RE】:①Reverse_Checkin ②SimplePE ③EzGame 【Web】①f12 ②ezrunner 【Crypto】①MD5 ②password ③看我回旋踢 ④摩丝 【Misc】①爆爆爆爆 ②凯撒大帝的三个秘密 ③你才是职业选手 一、 Re ① Reverse Chec…

Qwen2.5-7B推理实战:用vLLM+Gradio快速搭建交互式网页应用

Qwen2.5-7B推理实战:用vLLMGradio快速搭建交互式网页应用 一、前言 随着大语言模型(LLM)技术的飞速发展,如何高效部署并提供用户友好的交互界面成为落地应用的关键环节。阿里云推出的 Qwen2.5-7B-Instruct 模型在知识广度、编程…

搜索研究文献的渠道有哪些:常用资源平台与获取途径解析

盯着满屏的PDF,眼前的外语字母开始跳舞,脑子里只剩下“我是谁、我在哪、这到底在说什么”的哲学三问,隔壁实验室的师兄已经用AI工具做完了一周的文献调研。 你也许已经发现,打开Google Scholar直接开搜的“原始人”模式&#xff…