从灵感到产品只有“一句话”的距离?SeaVerse 开启 AI 原生创作革命

在科技圈,我们经常听到“AI 转型”,但你听说过“AI 原生”(AI Native)吗?

2026年1月10日,新加坡科技巨头 Sea 旗下的SeaVerse正式发布了全球首个AI 原生创作与部署平台。这不仅仅是一个工具的更新,而是一场关于“生产力定义”的彻底革命。

如果你是一名关注趋势的普通用户,或者正深处数字化转型深水区的从业者,这篇博文将带你读懂:为什么 SeaVerse 的出现,标志着“人人都是产品经理/开发者”的时代真正降临。


🚀 什么是“All in AI Native”?

过去,我们要开发一个简单的 3D 游戏或应用,流程是碎片化的:在 Midjourney 画图,在 Runway 剪视频,在 GitHub 找代码,最后还要租服务器部署。

SeaVerse 终结了这种碎片化。

它的核心逻辑是:一个 Prompt(提示词),生成一个完整的、可运行的产品。

全模态生成:输入“一个未来主义的 3D 赛车游戏”,SeaVerse 会同时生成场景、模型、音乐和代码。

端到端闭环:从生成到预览,从发布到迭代,全部在一个工作区完成。

一键部署:告别服务器配置和脚本。点击发布,直接生成可在浏览器打开的链接。

协作迭代:团队成员可以直接在产品实例上反馈和修改,版本自动同步。

CEO 寄语:“我们的目标是坍缩从创意到真实产品之间的距离。”


📈 估值 10 倍的野心:Sea 的万亿美金蓝图

SeaVerse 的发布并非孤立事件。就在不久前,Sea 创始人Forrest Li(李小冬)在员工信中描绘了一个宏伟愿景:借助 AI 的力量,Sea 的市值有望增长 10 倍,迈向 1 万亿美元大关。

李小冬将 AI 革命比作当年的 PC 和智能手机:

普及化:过去昂贵、专业的技术服务,现在将触达每一个人。

效率飞跃:AI 已深度融入 Sea 的客服、游戏及电商业务。

财务独立:相比 2021 年的波动,Sea 现在三大业务均实现盈利,拥有掌控自己命运的底气。

面对 TikTok Shop、Lazada 以及 Temu 等强敌的环伺,SeaVerse 正是 Sea 祭出的“降维打击”武器——通过极低门槛的 AI 创作生态,锁住未来的创作者与用户。


🌊 数字化转型从业者必读:三个核心洞察

对于正在推动企业转型的同仁,SeaVerse 的逻辑提供了极具价值的参考:

从“工具堆砌”转向“原生工作流”数字化转型不应只是给员工买一堆 AI 账号,而应像 SeaVerse 一样,构建一个从灵感到交付的闭环系统。

“一个人就是一支团队”不再是口号当一个人能独立完成设计、编程、音效和部署时,企业的组织架构将面临重组。小规模、高敏捷的“超级个体”团队将成为主流。

消除“部署焦虑”SeaVerse 展示了未来软件的形态:无需配置环境,即产即用。这极大地缩短了企业的市场测试周期(Time-to-Market)。


💬 结语

SeaVerse 的名字寓意着“从一个创意创造出一个宇宙”。在这个 AI 原生的时代,限制我们的不再是技术门槛,而是想象力的边界。

你是如何看待“一键生成产品”的未来?你会用 SeaVerse 开发你的第一个 AI 应用吗?欢迎在评论区分享你的脑洞!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1148625.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CSS选择器分类总结(AI版)

本文系统总结了CSS选择器的分类和使用方法。 表格形式呈现了基础选择器(元素、类、ID、通用)、组合选择器(后代、子、兄弟等)、伪类选择器(状态/位置)、伪元素选择器以及属性选择器的具体用法和优先级。 重…

深度学习抠图Rembg:婚纱照精修实战案例

深度学习抠图Rembg:婚纱照精修实战案例 1. 引言:AI驱动的图像去背景革命 1.1 婚纱摄影后期的痛点与挑战 在婚纱摄影行业中,人像精修是后期制作的核心环节。传统抠图依赖设计师使用Photoshop等工具手动绘制路径或使用魔棒、快速选择工具进行…

ResNet18物体识别入门:小白3步上手,无需担心显存

ResNet18物体识别入门:小白3步上手,无需担心显存 引言:为什么选择ResNet18作为你的第一个AI模型? 当你刚开始学习AI时,可能会被各种复杂的模型和硬件要求吓到。特别是看到那些需要高端显卡才能运行的模型&#xff0c…

U2NET模型应用:Rembg抠图部署与性能优化详解

U2NET模型应用:Rembg抠图部署与性能优化详解 1. 智能万能抠图 - Rembg 在图像处理、电商展示、内容创作等领域,自动去背景(Image Matting / Background Removal) 是一项高频且关键的需求。传统方法依赖人工精细抠图或基于颜色阈…

U2NET模型应用:Rembg抠图部署与性能优化详解

U2NET模型应用:Rembg抠图部署与性能优化详解 1. 智能万能抠图 - Rembg 在图像处理、电商展示、内容创作等领域,自动去背景(Image Matting / Background Removal) 是一项高频且关键的需求。传统方法依赖人工精细抠图或基于颜色阈…

ResNet18模型压缩指南:低成本GPU实现轻量化部署

ResNet18模型压缩指南:低成本GPU实现轻量化部署 引言 在嵌入式设备上部署深度学习模型时,我们常常面临一个矛盾:模型精度和计算资源之间的平衡。ResNet18作为经典的图像识别模型,虽然比大型模型轻量,但在资源受限的嵌…

ResNet18图像分类5问5答:没GPU如何快速上手

ResNet18图像分类5问5答:没GPU如何快速上手 引言 作为一名刚接触深度学习的新手,你可能经常听到"ResNet18"这个名词,但面对复杂的网络结构和代码实现时又感到无从下手。特别是当你手头没有强大的GPU设备时,更会担心无…

CPU也能跑的深度估计方案|AI 单目深度估计 - MiDaS镜像全解析

CPU也能跑的深度估计方案|AI 单目深度估计 - MiDaS镜像全解析 🌐 技术背景:从2D图像中“看见”3D世界 在计算机视觉领域,单目深度估计(Monocular Depth Estimation)是一项极具挑战性但又极具实用价值的技…

ResNet18模型体验新方式:不用买显卡,按分钟计费更划算

ResNet18模型体验新方式:不用买显卡,按分钟计费更划算 1. 为什么选择ResNet18? ResNet18是计算机视觉领域的经典模型,特别适合物体识别任务。它通过"残差连接"设计解决了深层网络训练难题,在保持较高精度的…

ResNet18一键部署:适合小白的AI体验方案

ResNet18一键部署:适合小白的AI体验方案 引言:为什么选择ResNet18作为AI入门第一课? 作为一名退休工程师,您可能对AI技术充满好奇,但又被复杂的开发环境、晦涩的数学公式和庞大的模型参数吓退。ResNet18正是为解决这…

Qwen2.5-7B-Instruct性能全解析|支持128K上下文与多语言结构化生成

Qwen2.5-7B-Instruct性能全解析|支持128K上下文与多语言结构化生成 一、技术背景与核心价值 随着大语言模型在自然语言理解、代码生成和数学推理等领域的持续演进,通义千问团队推出了新一代 Qwen2.5 系列模型。该系列在知识广度、任务执行能力和长文本处…

睡一觉就能预知130种疾病?斯坦福SleepFM模型开启“睡眠数字孪生”新时代

当AI比你更懂你的梦境,大健康产业的数字化转轨正悄然发生。“昨晚睡得好吗?”这句日常的问候,在人工智能眼中正变成一份详尽的健康诊断书。近日,斯坦福大学在《Nature Medicine》上发表了一项重磅研究:由James Zou教授…

ResNet18 vs MobileNet实测对比:2小时低成本选型方案

ResNet18 vs MobileNet实测对比:2小时低成本选型方案 引言 当你需要为APP选择图像识别模型时,面对ResNet18和MobileNet这两个经典选项,是否感到纠结?特别是初创团队在测试阶段,租用GPU服务器月付3000元起步的成本让人…

ResNet18物体识别新方案:比本地快3倍,成本低80%

ResNet18物体识别新方案:比本地快3倍,成本低80% 1. 为什么你需要这个方案? 作为一名AI工程师,你一定遇到过这些烦恼:本地环境配置复杂、CUDA版本冲突、训练速度慢、显卡价格昂贵... 这些问题不仅影响开发效率&#x…

AI、决定性优势的幽灵与国际冲突:架构师的深度阅读清单

前言:在2026年这个节点回望,人工智能不再仅仅是生产力工具,它已化身为地缘政治中挥之不去的“幽灵”。正如Oliver Guest与Oscar Delaney在最新综述中所指出的:当AI可能带来**决定性战略优势(Decisive Strategic Advant…

告别复杂配置|一键启动的MiDaS深度估计镜像来了

告别复杂配置|一键启动的MiDaS深度估计镜像来了 在计算机视觉领域,单目深度估计正成为连接2D图像与3D世界的关键桥梁。无论是增强现实、机器人导航,还是AIGC内容生成,理解场景的空间结构都至关重要。然而,部署一个稳定…

使用LLaMA-Factory微调Qwen2.5-7B-Instruct模型

使用LLaMA-Factory微调Qwen2.5-7B-Instruct模型 一、前言 在大语言模型(LLM)快速发展的今天,如何高效地将通用预训练模型适配到特定业务场景已成为AI工程化落地的核心挑战。本文将详细介绍如何使用 LLaMA-Factory 工具对通义千问团队发布的 Q…

ResNet18开箱即用镜像:0配置体验物体识别,1块钱起

ResNet18开箱即用镜像:0配置体验物体识别,1块钱起 1. 为什么选择ResNet18镜像? ResNet18是计算机视觉领域的经典模型,特别适合工业质检这类需要快速验证的场景。想象一下,你刚创业做工业零件质检,需要快速…

Rembg API开发:错误处理与日志

Rembg API开发:错误处理与日志 1. 引言:智能万能抠图 - Rembg 在图像处理领域,自动去背景是一项高频且关键的需求,广泛应用于电商、设计、内容创作等场景。传统方法依赖人工标注或简单阈值分割,效率低、精度差。而基…

Rembg抠图性能对比:不同硬件环境测试报告

Rembg抠图性能对比:不同硬件环境测试报告 1. 引言 1.1 背景与需求 在图像处理、电商展示、内容创作等领域,自动去背景(抠图) 是一项高频且关键的需求。传统方法依赖人工精细绘制蒙版或使用Photoshop等工具进行手动操作&#xf…