最优控制电池储能模型 蓄电池储能模型的最优控制python源代码,代码按照高水平文章复现 包含...

最优控制电池储能模型 蓄电池储能模型的最优控制python源代码,代码按照高水平文章复现 包含五个python脚本,它从data .csv读取价格、负载和温度数据。 然后用本文中描述的决策变量、目标和约束构造一个pyomo抽象模型。 然后使用开放源代码的内部点算法求解器ipopt来计算最优解,并绘制出结果。 BESS模型可以根据物理域进行分类:荷电状态(SoC)、温度和降解。 SoC模型可以通过定义容量的单位进一步分类:电能、电荷和化学浓度。 大多数基于SoC的能量模型都是线性的,在表示效率和功率限制的方式上存在差异。 基于充电的SoC模型包括许多预测电池组电压的等效电路的变化。 基于化学浓度的SoC模型在电池设计中使用材料特性和物理参数来预测电池电压和充电容量。 温度是通过热产生和传热的组合来模拟的。 热是通过熵变、过电位损失和电阻加热产生的。 热通过传导、辐射和对流进行传递。 热模型的变化是基于产生和传递机制的表示和有限元在模型中的数量和物理意义。 电池退化建模可以根据经验或基于潜在的物理机制。 经验应力因子模型分离了时间、电流、SoC、温度和放电深度(DoD)对电池健康状态(SoH)的影响。 通过一些简化的假设,这些压力因素可以用正则化规范来表示。 物理降解模型可以进一步分为副反应模型和材料疲劳模型。 本文通过几个控制器设计实例,论证了模型选择对最优控制的重要性。 简单的模型可能会高估或低估电池系统的能力。 添加细节可以以牺牲模型复杂性和计算时间为代价提高准确性。

电池储能系统的建模与优化控制是一个充满挑战的研究领域。今天,我们来探讨一个基于电池储能模型的最优控制问题,并尝试通过Pyomo建模框架实现它。希望通过这次分享,能带大家一起了解如何将理论模型转化为可执行代码,并在实际数据中找到最优解。

模型分类与选择

首先,电池储能系统的模型主要可以分为以下几个物理域:

  • 荷电状态(SoC):电池当前存储的能量占总容量的比例。
  • 温度:电池内部的温度变化,会影响效率和寿命。
  • 退化:电池性能随时间的衰减。

SoC模型可以进一步细分为电能模型、电荷模型和化学浓度模型。其中,电能模型和电荷模型通常采用线性化处理以简化计算,但它们在效率和功率限制的表示上存在差异。基于化学浓度的模型则更接近电池的物理特性,但计算复杂度更高。

数据准备

我们从CSV文件中读取价格、负载和温度数据,这些都是模型运行的基础。假设数据文件data.csv包含以下几列:时间戳、电价、负载功率、环境温度。

import pandas as pd import numpy as np data = pd.read_csv('data.csv', index_col='timestamp') # 查看数据 print(data.head())

Pyomo建模框架

Pyomo是一个功能强大的建模工具,适合处理优化问题。我们需要定义决策变量、目标函数和约束条件。

模型中的决策变量包括:

  • 充放电功率(Pcharge, Pdischarge)
  • 荷电状态(SoC)
  • 电池温度(Temp)

优化目标是最小化电池运行成本,即:

$$

\text{Cost} = \sum{t=1}^T (P{discharge}(t) \cdot price(t) - P_{charge}(t) \cdot price(t))

$$

约束条件包括:

  • 功率平衡约束:电池充放电功率满足负载需求。
  • 容量约束:荷电状态SoC在合理范围内变化。
  • 温度约束:电池温度不会超出安全范围。
from pyomo.environ import * # 初始化模型 model = ConcreteModel() # 时间索引 T = len(data) model.t = RangeSet(1, T) # 决策变量 model.P_charge = Var(model.t, domain=NonNegativeReals) model.P_discharge = Var(model.t, domain=NonNegativeReals) model.SoC = Var(model.t, domain=Reals, bounds=(0.1, 0.9)) model.Temp = Var(model.t, domain=Reals, bounds=(15, 40))

模型的具体实现

根据文献中的描述,我们需要将模型拆分为几个部分:

  1. SoC动态模型
    $$
    SoC(t) = SoC(t-1) + \etac \cdot P{charge}(t) \cdot \Delta t - \frac{P{discharge}(t) \cdot \Delta t}{\etad}
    $$

其中,$\etac$ 和 $\etad$ 是充放电效率,$\Delta t$ 是时间步长(通常为1小时)。

  1. 温度模型
    温度受电池内部产热和散热两方面影响。产热可以通过以下公式计算:
    $$
    Q{gen}(t) = I(t)^2 \cdot R{cell}(t) + \Delta S(t) \cdot T(t)
    $$

其中,$R_{cell}$ 是电池内阻,$S$ 是熵变。

  1. 退化模型
    我们采用基于应力因子的经验模型,定义降级速率:
    $$
    D(t) = f(current, SoC, Temp, DoD)
    $$

在代码中,我们简化处理,直接根据文献中的公式定义约束条件:

# 参数初始化 eta_c = 0.95 # 充电效率 eta_d = 0.95 # 放电效率 delta_t = 1 # 时间步长,小时 c_rate = 1 # 放电倍率 # 状态转移方程 def _soc_balance(model, t): if t == 1: soc_prev = 0.5 # 初始SoC设为50% else: soc_prev = model.SoC[t-1] charge = model.P_charge[t] discharge = model.P_discharge[t] return model.SoC[t] == soc_prev + eta_c * charge * delta_t - (discharge * delta_t) / eta_d model.soc_balance = Constraint(model.t, rule=_soc_balance) # 其他约束 def _power_balance(model, t): # 假设负载功率为负值,表示需要从电网获取 load = data['load'][t-1] return model.P_discharge[t] - model.P_charge[t] == load model.power_balance = Constraint(model.t, rule=_power_balance)

求解与结果

接下来,我们使用ipopt求解器计算最优解,并对结果进行可视化。

# 添加目标函数 model_obj = sum((model.P_discharge[t] * data['price'][t-1] - model.P_charge[t] * data['price'][t-1]) for t in model.t) model.obj = Objective(expr=model_obj, sense=minimize) # 求解 solver = SolverFactory('ipopt') results = solver.solve(model) print(results) # 结果可视化 import matplotlib.pyplot as plt # 绘制SoC曲线 plt.figure(figsize=(10, 6)) plt.plot([model.SoC[t].value for t in model.t], label='State-of-Charge') plt.xlabel('Time (hours)') plt.ylabel('SoC') plt.legend() plt.show() # 绘制功率曲线 plt.figure(figsize=(10, 6)) plt.plot([model.P_charge[t].value for t in model.t], label='Charging Power') plt.plot([model.P_discharge[t].value for t in model.t], label='Discharging Power') plt.xlabel('Time (hours)') plt.ylabel('Power (kW)') plt.legend() plt.show()

模型选择的重要性

在实际应用中,模型的选择对优化结果有显著影响。例如,如果我们选择了过于简化的SoC模型,可能会低估电池的实际容量;而过于复杂的化学浓度模型则会增加计算负担,甚至影响实时性。

因此,在设计控制系统时,我们需要在模型复杂性和计算效率之间找到平衡点。例如,在电池容量较大的情况下,线性化SoC模型已经足够;而在高精度控制需求下,则需要引入化学浓度模型。

总结

通过这次实践,我们实现了从数据读取到模型定义,再到结果分析的完整流程。这不仅验证了Pyomo在优化问题中的强大功能,也为理解电池储能系统的最优控制提供了直观的视角。未来,我们可以尝试引入更复杂的降级模型或热管理模型,进一步提升系统的仿真精度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1145200.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

实体识别模型可解释性:云端可视化分析,3步生成合规报告

实体识别模型可解释性:云端可视化分析,3步生成合规报告 引言:为什么医疗AI需要可解释性报告? 在医疗AI产品的审批流程中,药监部门最关心的不是模型效果有多好,而是"这个AI为什么做出这样的决策"…

智能写作AI体对比:5个模型10块钱全面体验

智能写作AI体对比:5个模型10块钱全面体验 引言:为什么需要横向评测AI写作助手? 作为内容创作者,你可能经常面临这样的困境:想用AI辅助写作,但面对市面上五花八门的模型不知如何选择。本地部署大模型需要昂…

AI智能体商业分析案例:云端GPU免配置,立即出报告

AI智能体商业分析案例:云端GPU免配置,立即出报告 引言:当商业分析遇上AI智能体 作为一名咨询顾问,你是否经常遇到这样的困境:客户临时需要一份市场分析报告,而传统的数据收集、清洗、分析和报告撰写流程至…

多模态实体识别竞赛方案:云端分布式训练,1周完成比赛作品

多模态实体识别竞赛方案:云端分布式训练,1周完成比赛作品 引言:当实验室GPU被占用时如何高效备赛 参加AI竞赛的研究生常常会遇到这样的困境:实验室的GPU资源被师兄师姐占用,自己的笔记本跑全量训练需要一个月&#x…

AI实体侦测容灾方案:云端多区域自动切换,保障99.99%可用性

AI实体侦测容灾方案:云端多区域自动切换,保障99.99%可用性 在银行核心系统中,AI组件已经成为风险监控、欺诈检测和智能客服的关键支撑。但金融业务对系统稳定性有着近乎苛刻的要求——任何服务中断都可能造成巨额损失。本文将介绍如何通过云…

最新AI侦测模型体验:云端GPU 5分钟跑通Demo,成本1块钱

最新AI侦测模型体验:云端GPU 5分钟跑通Demo,成本1块钱 1. 为什么你需要云端GPU跑AI侦测模型? 作为一名技术爱好者,你可能经常遇到这样的困境:看到论文发布了新的AI侦测算法,想亲自体验效果,但…

教育行业AI智能体应用:1块钱体验智能批改作业

教育行业AI智能体应用:1块钱体验智能批改作业 引言:AI如何帮老师减负 作为一名教师,每天批改作业可能占用了您大量的休息时间。现在,借助AI智能体技术,您只需花费1块钱就能体验智能批改作业的神奇效果。这种技术不是…

智能侦测数据增强:云端合成百万训练样本

智能侦测数据增强:云端合成百万训练样本 引言:为什么需要数据增强? 做AI研究的研究生们都知道,训练一个高质量的模型需要大量标注数据。但手动标注不仅耗时耗力,还常常面临数据不足的问题。想象一下,如果…

AI智能体物流优化案例:1块钱模拟运输路线规划

AI智能体物流优化案例:1块钱模拟运输路线规划 1. 为什么需要AI物流路线规划? 作为一名物流调度员,每天最头疼的就是如何安排最优的运输路线。传统方式需要手动计算各种因素:送货地点、货物重量、车辆容量、交通状况等&#xff0…

AI侦测模型避坑指南:3个常见错误+云端一键解决方案

AI侦测模型避坑指南:3个常见错误云端一键解决方案 引言:为什么你的AI侦测模型总出问题? 想象一下,你正在搭建一个智能监控系统来识别异常行为(比如摔倒、打架或异常入侵),但模型要么崩溃报错&…

AI侦测模型调优指南:20个技巧+云端实验环境

AI侦测模型调优指南:20个技巧云端实验环境 1. 为什么需要云端调优环境? 作为一名中级工程师,你可能已经发现本地调试AI侦测模型存在几个痛点:每次训练需要3小时起步、超参数调整效率低下、指标变化无法实时观察。这些问题严重影…

亲测好用!10个AI论文平台测评:本科生毕业论文全攻略

亲测好用!10个AI论文平台测评:本科生毕业论文全攻略 学术写作工具测评:为何需要一份靠谱的AI论文平台榜单 随着人工智能技术在学术领域的深入应用,越来越多的本科生开始借助AI论文平台提升写作效率与质量。然而,面对市…

AI智能体自然语言处理:5个实战案例解析

AI智能体自然语言处理:5个实战案例解析 引言:当NLP遇上智能体会发生什么? 想象一下,你训练了一个能写诗的语言模型,但它只会被动响应你的指令。如果给它装上"大脑"(决策能力)和&quo…

VS Code新版本无法连接WSL ubuntu18.04

原因VS Code升级1.85以上后,隐性升级了捆绑的node版本,vscode-server的node依赖于GLIBC_2.28(使用旧版本等于丧失新功能使用权,而且设置也可能无法同步)常见报错sh: 1: /scripts/wslServer.sh: not found升级后&#x…

AI侦测实战案例:10分钟完成视频流分析部署

AI侦测实战案例:10分钟完成视频流分析部署 引言:为什么需要离线AI视频分析? 想象一下这样的场景:你带着智能监控设备去客户现场演示,却发现那里网络信号极差,连基本的视频上传都成问题。这正是很多监控设…

没预算怎么做POC?AI侦测按需付费,1元验证可行性

没预算怎么做POC?AI侦测按需付费,1元验证可行性 1. 为什么创业公司需要低成本AI安防POC 作为创业公司,向投资人演示产品前往往面临一个两难困境:既需要展示足够专业的技术方案,又受限于紧张的预算无法投入大量资源。…

联邦学习+AI侦测:隐私保护的新方案

联邦学习AI侦测:隐私保护的新方案 引言 在银行风控领域,数据就是黄金。但现实情况是:各家银行的数据就像锁在各自保险箱里的珍宝,既想联合起来提升风控能力,又担心数据泄露风险。这就是典型的"数据孤岛"困…

AI侦测竞赛必备:临时GPU按需创建,赛后立即释放省钱

AI侦测竞赛必备:临时GPU按需创建,赛后立即释放省钱 引言:为什么你需要临时GPU资源? 参加AI侦测竞赛时,很多同学都会遇到一个两难问题:决赛阶段需要更强的算力来跑模型,但比赛可能只持续3天&am…

AI智能体+CRM集成指南:零代码5分钟连接业务数据

AI智能体CRM集成指南:零代码5分钟连接业务数据 1. 为什么销售经理需要AI智能体 作为销售经理,你是否经常遇到这些困扰: - 客户数据分散在各个系统中,难以快速获取全局视图 - 手工制作销售报表耗时费力,无法实时掌握业…

智能家居AI侦测方案:树莓派+云端协同,低成本实现

智能家居AI侦测方案:树莓派云端协同,低成本实现 引言:为什么需要边缘云端协同? 智能家居正在从简单的远程控制进化到主动感知环境、预测需求的AI时代。但一个现实难题摆在面前:摄像头、传感器产生的海量数据全部上传…