震惊!AI智能体落地90%竟是架构设计?小白程序员必看的大模型开发真相

越来越多企业已经落地 AI 智能体应用,我们会不约而同的发现,AI 智能体应用在企业落地 90% 的工作都是工程架构设计(软件工程),只有 10% 是真正的 AI 大模型。

AI 智能体在企业落地中的每一个组件都是模块化的,而且逐步达成到了行业标准:比如:LangChain、Spring AI Alibaba 开发编排框架,MCP 通信交互协议等等,这些构成了 AI 智能体的生态系统。

AI 智能体应用落地的生态系统包含14层,从下到上分别为:CPU/GPU 提供商层、基础设施/基础层、数据库、ETL(提取、加载、转换)层、基础模型层、模型路由层、AI 智能体协议层、AI 智能体编排层、AI 智能体认证层、AI 智能体可观测层、工具层、认证层、记忆层、前端层等。

如上图所示,这14层只有基础模型层(10%)是 AI 大模型工作,其他13层(90%)都是架构设计工程工作,下文我们对详细剖析之。

1

AI 智能体生态系统架构设计剖析

0、AI 智能体生态系统总体架构设计

AI 智能体生态系统总体架构设计包含14层,从下到上分别为:CPU/GPU 提供商层、基础设施/基础层、数据库、ETL(提取、加载、转换)层、基础模型层、模型路由层、AI 智能体协议层、AI 智能体编排层、AI 智能体认证层、AI 智能体可观测层、工具层、认证层、记忆层、前端层等。

1、第一层:CPU/GPU 提供商层

这些公司为 AI 智能体提供强大的计算能力,用于训练、推理和低延迟的执行。

包括硬件厂商英伟达 GPU、谷歌 TPU、华为昇腾系列,以及公有云厂商 Azure、Google Cloud Platform(GCP)、阿里云、腾讯云、华为云等。

2、第二层:基础设施/基础层

像容器和编排工具这样的基础设施,确保 AI 智能体能够可扩展、可靠且分布式地部署。

包括 Docker、Kubernetes、Kserve、Knative、Auto Scale VMs。

3、第三层:数据层

AI 智能体需要快速访问的数据系统,用于存储记忆、检索上下文以及在结构化和向量化数据中进行实时决策。

包括 Milvus、Chroma、Pinecone、Neo4j、MongoDB、Elasticsearch、PGVector、MySQL 等。

4、第四层:ETL(提取、加载、转换)层

这些平台从各种来源收集原始数据,并将其转换成 AI 智能体可以使用的格式。

包括 Datavolo、Noodle.ai、Verodata 等。

5、第五层:基础模型层

包括大型和小型语言模型(LLMs 和 SLMs),它们构成了 AI 智能体的认知核心,支持推理、对话和行动。

包括 GPT、DeepSeek、Qwen、Claude、Grok、Llama 等大模型,以及 Yolox、PaddleOCR 等小模型。

6、第六层:模型路由层

根据成本、延迟和输出质量,将任务分配给最适合的模型,从而提高效率。

包括Martian、OpenRouter、Higress、Not Diamond 等。

7、第7层:AI 智能体协议层

定义 AI 智能体之间的交互和通信方式。像 MCP、A2A、AG-UI、ANP、ACP 这样的协议,有助于结构化的多 AI 智能体协作和上下文管理。

8、第8层:AI 智能体编排层

使 AI 智能体能够执行工作流、与其他 AI 智能体交互,并在工具和环境中进行协调。

包括 Spring AI Alibaba、LangGraph、Autogen、LlamaIndex、Swarm、Eino 等。

9、第九层:AI 智能体认证层

处理 AI 智能体在可信生态系统内的安全身份、访问控制和基于角色的权限。

包括 AWS AgentCore Identity、Azure Entry Agent ID 等。

10、第十层:AI 智能体可观测层

通过遥测、日志、反馈循环和分析来跟踪 AI 智能体的行为,以便持续改进和调试 AI 智能体。

包括 LangSmith、Langfuse、Arize、OpenTelemetry、Helicone、Opik 等。

11、第十一层:AI 智能体工具层

AI 智能体使用的 API、搜索和外部工具,用于获取实时数据、自动化决策或跨领域集成。

包括 Google Search、DuckDuckGo、Sorper、Exa 等。

12、第十二层:认证层

通过安全的身份验证和用户访问控制层来保护 AI 智能体的操作。

包括 Auth0、Okta、OpenFGA、ANON 等。

13、第十三层:记忆层

存储之前的交互和上下文知识,帮助 AI 智能体随着时间的推移进行个性化和适应。

包括 Zep、Mem0、Letta、Cgnee 等。

14、第十四层:前端层

用户与 AI 智能体无缝交互的 UI 组件,比如: Web 应用和聊天界面。

包括 Streamlit、Flask、gradio、NEXT 等。

总之,以上就是 AI 智能体应用在企业落地的生态系统,可以根据企业总的业务场景灵活选择每层中的工具和技术,但是并不是所有列出的技术都需要用来构建一个有效的 AI 智能体应用中。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1140519.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

腾讯开源翻译模型优化:HY-MT1.5内存管理技巧

腾讯开源翻译模型优化:HY-MT1.5内存管理技巧 1. 引言:腾讯开源翻译大模型的演进与挑战 随着全球化进程加速,高质量、低延迟的机器翻译需求日益增长。腾讯推出的混元翻译模型(HY-MT)系列持续迭代,最新发布的…

混元翻译1.5实战:多语言内容审核

混元翻译1.5实战:多语言内容审核 随着全球化内容传播的加速,跨语言内容审核成为社交平台、电商平台和媒体机构面临的核心挑战之一。传统翻译服务往往侧重于通用语义转换,难以满足内容安全、术语一致性与上下文敏感性等专业需求。腾讯开源的混…

HY-MT1.5性能测试:33种语言互译速度排行榜

HY-MT1.5性能测试:33种语言互译速度排行榜 随着全球化进程加速,高质量、低延迟的多语言互译能力成为AI应用的核心需求之一。腾讯近期开源的混元翻译大模型HY-MT1.5系列,凭借其对33种语言及多种民族语种的支持,迅速引发业界关注。…

HY-MT1.5模型压缩:4bit量化实践指南

HY-MT1.5模型压缩:4bit量化实践指南 1. 引言 随着大模型在机器翻译领域的广泛应用,如何在保证翻译质量的同时降低部署成本、提升推理效率,成为工程落地的关键挑战。腾讯开源的混元翻译大模型 HY-MT1.5 系列(包含 HY-MT1.5-1.8B …

HY-MT1.5-1.8B推理耗时仅200ms?边缘设备实测

HY-MT1.5-1.8B推理耗时仅200ms?边缘设备实测 近年来,随着多语言交流需求的爆发式增长,高质量、低延迟的翻译模型成为AI落地的关键环节。传统云端翻译服务虽性能强大,但受限于网络延迟和隐私风险,在实时性要求高的边缘…

论文降重服务:降低AI率指南

论文降重服务:如何有效降低论文AI率 近年来,随着AIGC技术的广泛应用,论文中的AI生成内容比例越来越受到学术界的重视。许多高校和机构都以知网AIGC检测作为衡量论文原创性和合规性的标准。因此,掌握一套有效的论文降重服务工具&a…

「真香」小白也能懂!MCP协议构建人机协同系统,大模型开发不再难

如何在分布式、多端协同的复杂场景下,构建高效的 Human In The Loop(人机回路)机制。本文详细阐述了基于 Model Context Protocol(MCP)协议的一体化解决方案,通过标准化工程设计,在各类 Agent 平…

本人今年36岁,大龄程序员失业在家,一年半了,还是找不到工作,我该如何是好?

这是小红书上一位上海的Java程序员失业想转行的分享贴。 Java开发的就业市场正在经历结构性调整,竞争日益激烈 传统纯业务开发岗位(如仅完成增删改查业务的后端工程师)的需求,特别是入门级岗位,正显著萎缩。随着企业…

导师严选8个AI论文软件,自考学生轻松搞定毕业论文!

导师严选8个AI论文软件,自考学生轻松搞定毕业论文! AI 工具如何助力自考学生轻松应对论文挑战 随着人工智能技术的不断进步,越来越多的自考学生开始借助 AI 工具来提升论文写作效率。这些工具不仅能帮助学生快速生成初稿、优化语言表达&#…

Qwen3-VL-WEBUI移动端方案:手机也能玩,地铁上体验视觉AI

Qwen3-VL-WEBUI移动端方案:手机也能玩,地铁上体验视觉AI 1. 为什么你需要这个移动端方案? 作为一名通勤族,你可能经常遇到这样的情况:地铁上看到有趣的场景想用AI分析,或者排队时突然想测试某个视觉创意&…

HY-MT1.5-1.8B实战:车载系统实时语音翻译

HY-MT1.5-1.8B实战:车载系统实时语音翻译 随着智能汽车和车联网技术的快速发展,多语言实时语音翻译在车载场景中的需求日益增长。驾驶员与乘客来自不同国家和地区时,如何实现低延迟、高准确率的跨语言沟通成为关键挑战。传统云端翻译方案受限…

【震惊】LLM终于不再“健忘“!Mem0长期记忆系统让AI记住你的每一个需求,小白程序员也能轻松上手!

大语言模型(LLM)在理解和生成连贯对话方面取得了显著成就。但是,它们存在一个内在的“记忆缺陷”,即它们拥有的上下文窗口是有限的,这严重限制了它们在多轮次、多会话的长期交互中维持一致性的能力。当对话内容超出了上…

【拯救HMI】工业HMI通讯协议入门:Modbus协议详解(新手必学)

在工业自动化系统中,HMI与PLC、传感器、仪表等设备之间的“对话”,必须遵循一套严格的语法规则,这套规则就是通讯协议。在众多协议中,Modbus以其极致的简单、开放和广泛的兼容性,成为了工业领域无可争议的“通用普通话…

Qwen3-VL模型对比:云端快速切换,3小时完成4个版本评测

Qwen3-VL模型对比:云端快速切换,3小时完成4个版本评测 引言 当技术选型委员会需要评估不同规模的Qwen3-VL模型版本时,传统方式往往意味着反复配置环境、调试参数、等待模型加载——这个过程不仅耗时耗力,还可能因为环境差异导致…

腾讯混元翻译1.5:民族语言语料收集与训练指南

腾讯混元翻译1.5:民族语言语料收集与训练指南 1. 引言:为何需要HY-MT1.5这样的多语言翻译模型? 随着全球化进程的加速,跨语言沟通需求日益增长,尤其是在中国这样一个多民族、多方言的国家,通用翻译系统往…

软件创业者如何无后端基础也能做后台?

软件创业者如何无后端基础也能做后台? 最近跟几个做独立开发的朋友聊天,发现一个挺普遍的现象:大家点子都挺多,前端技术也都不错,但一提到要搞个后台、弄个数据库、写点接口,立马就头大了。要么是硬着头皮去…

AI智能体已成主流!LangChain报告:57%企业已部署,代码助手已成程序员日常必备技能!

LangChain 调查了 1300 多名专业人士,涵盖工程师、产品经理、业务负责人及企业高管,旨在揭示 AI 智能体的发展现状。让我们深入解读数据,剖析如今 AI 智能体的应用(或未被应用)情况。 1. 引言 步入 2026 年&#xff…

HY-MT1.5部署遇兼容问题?Docker容器化解决方案详解

HY-MT1.5部署遇兼容问题?Docker容器化解决方案详解 1. 背景与挑战:HY-MT1.5模型的潜力与部署困境 腾讯开源的混元翻译大模型 HY-MT1.5 系列,包含两个核心版本:HY-MT1.5-1.8B 和 HY-MT1.5-7B,分别面向轻量级边缘设备和…

Qwen3-VL多模态开发:云端GPU+预装环境,省去3天配置时间

Qwen3-VL多模态开发:云端GPU预装环境,省去3天配置时间 引言:为什么选择云端预装环境? 作为初创公司的CTO,你可能正面临这样的困境:技术团队忙于主营业务开发,而新产品原型需要快速验证。Qwen3…

AI出海翻译解决方案:HY-MT1.5开源模型应用趋势一文详解

AI出海翻译解决方案:HY-MT1.5开源模型应用趋势一文详解 随着全球化进程加速,AI驱动的多语言翻译技术成为企业“出海”战略的核心基础设施。在这一背景下,腾讯混元团队推出的HY-MT1.5系列翻译大模型,凭借其高性能、低延迟和灵活部…