人工智能之数学基础:大数定律之切比雪夫不等式

本文重点

切比雪夫不等式是概率论与统计学中的核心工具,由俄国数学家切比雪夫于19世纪提出。它为任意分布的随机变量提供了偏离期望值的概率上界,仅依赖期望与方差信息,揭示了方差对数据集中趋势的控制作用。切比雪夫不等式以简洁的数学形式揭示了方差的核心作用——方差越小,数据越集中。它为概率估计提供了“安全网”,并通过支撑大数定律,构建了从“不确定性”到“可量化决策”的桥梁。尽管其概率边界保守,但在分布未知或样本量有限时,仍是数据科学与统计学中不可或缺的理论基石。

切比雪夫不等式

切比雪夫不等式建立了随机变量的数学期望和标准差之间的关系。设随机变量X具有期望μ和方差σ²,则对任意正数ε,有

通过这个公式可以看到:它为随机变量偏离数学期望的概率提供了一个估计上界。

直观理解就是随机变量X距离数学期望越远,则落入该区间的概率越小。

随机变量X的方差σ²越小,事件{|X-μ|<ε}的概率越大,即X取的值越集中在于它的期望μ附近。也就是说只要知道随机变量的方差,就可以在X的分布未知的情况下,估计概率值P{|X-μ|<ε}或P{|X-μ|≥ε}的概率,如下所示:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1137799.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qwen2.5-7B俄语NLP:斯拉夫语系处理最佳实践

Qwen2.5-7B俄语NLP&#xff1a;斯拉夫语系处理最佳实践 1. 引言&#xff1a;为何选择Qwen2.5-7B进行俄语NLP任务&#xff1f; 1.1 斯拉夫语系的自然语言处理挑战 俄语作为斯拉夫语系中使用最广泛的语言&#xff0c;具有高度屈折变化、丰富的语法格系统&#xff08;6个格&…

Qwen2.5-7B部署卡顿?注意力QKV偏置调优实战教程

Qwen2.5-7B部署卡顿&#xff1f;注意力QKV偏置调优实战教程 在大模型推理场景中&#xff0c;Qwen2.5-7B 作为阿里云最新发布的高性能语言模型&#xff0c;凭借其强大的长文本理解、结构化输出与多语言支持能力&#xff0c;正被广泛应用于智能客服、代码生成和数据分析等场景。…

为什么Qwen2.5-7B网页推理总失败?保姆级部署教程入门必看

为什么Qwen2.5-7B网页推理总失败&#xff1f;保姆级部署教程入门必看 你是否在尝试部署 Qwen2.5-7B 时频繁遇到网页推理失败的问题&#xff1f;明明配置了高性能 GPU&#xff0c;却依然卡在“加载中”或直接报错 CUDA out of memory、Model not responding&#xff1f;你不是一…

Flink:双流实时联结(Join)

本文重点 对于两条流的合并,很多情况我们并不是简单地将所有数据放在一起,而是希望根据某个字段的值在某些时间段内将它们联结起来,“配对”去做处理。例如用传感器监控火情时,我们需要将大量温度传感器和烟雾传感器采集到的信息,按照传感器 ID 分组、再将两条流中数据合…

Qwen2.5-7B镜像部署实战:4090D四卡并行配置详细教程

Qwen2.5-7B镜像部署实战&#xff1a;4090D四卡并行配置详细教程 1. 引言 1.1 业务场景描述 随着大语言模型在自然语言理解、代码生成、多语言支持等领域的广泛应用&#xff0c;越来越多企业和开发者希望快速部署高性能的开源模型用于实际业务。阿里云推出的 Qwen2.5-7B 模型凭…

人工智能之数学基础:伯努利大数定律

本文重点 伯努利大数定律由瑞士数学家雅各布伯努利于1713年提出,是概率论中描述随机事件频率稳定性的核心定理。它揭示了当独立重复试验次数趋于无穷时,事件发生的频率会依概率收敛于其真实概率的数学规律,被誉为“偶然与必然的统一”。这一理论不仅为概率论奠定了基础,更…

Qwen2.5-7B推理延迟高?GPU算力调度优化部署解决方案

Qwen2.5-7B推理延迟高&#xff1f;GPU算力调度优化部署解决方案 1. 背景与问题提出 1.1 Qwen2.5-7B模型简介 Qwen2.5 是阿里云最新发布的大型语言模型系列&#xff0c;覆盖从 0.5B 到 720B 参数的多个版本。其中 Qwen2.5-7B 是一个具备高性能、多语言支持和长上下文理解能力…

Qwen2.5-7B支持128K上下文?真实部署案例验证长文本处理能力

Qwen2.5-7B支持128K上下文&#xff1f;真实部署案例验证长文本处理能力 1. 引言&#xff1a;为何长上下文成为大模型竞争新高地&#xff1f; 随着大语言模型在知识问答、代码生成、文档摘要等复杂任务中的广泛应用&#xff0c;上下文长度逐渐成为衡量模型能力的关键指标之一。…

人工智能之数学基础:辛钦大数定律

本文重点 辛钦大数定律是概率论中描述独立同分布随机变量序列算术平均值稳定性的核心定理。它由苏联数学家亚历山大辛钦于1929年提出,揭示了当样本容量趋于无穷大时,样本均值几乎必然收敛于总体均值的数学规律。这一理论不仅为统计推断提供了基础,更在金融、保险、质量控制…

Qwen2.5-7B部署省50%成本:共享GPU资源实战方案

Qwen2.5-7B部署省50%成本&#xff1a;共享GPU资源实战方案 1. 背景与挑战&#xff1a;大模型推理的高成本瓶颈 随着大语言模型&#xff08;LLM&#xff09;在实际业务中的广泛应用&#xff0c;Qwen2.5-7B 作为阿里云最新发布的高性能开源模型&#xff0c;在编程、数学、多语言…

Qwen2.5-7B部署经验谈:单机4卡如何均衡负载分配

Qwen2.5-7B部署经验谈&#xff1a;单机4卡如何均衡负载分配 随着大语言模型在实际业务场景中的广泛应用&#xff0c;高效、稳定的本地化部署成为工程落地的关键环节。Qwen2.5-7B作为阿里云最新发布的中等规模语言模型&#xff0c;在保持高性能推理能力的同时&#xff0c;兼顾了…

Qwen2.5-7B降本部署案例:4x4090D高效运行,成本节省40%

Qwen2.5-7B降本部署案例&#xff1a;4x4090D高效运行&#xff0c;成本节省40% 1. 背景与挑战&#xff1a;大模型推理的算力瓶颈 随着大语言模型&#xff08;LLM&#xff09;在实际业务中的广泛应用&#xff0c;如何在保证推理性能的同时有效控制部署成本&#xff0c;成为企业…

2026年AI开发者必看:Qwen2.5-7B开源部署趋势分析

2026年AI开发者必看&#xff1a;Qwen2.5-7B开源部署趋势分析 1. Qwen2.5-7B&#xff1a;新一代开源大模型的技术跃迁 1.1 技术背景与演进路径 随着大语言模型&#xff08;LLM&#xff09;在自然语言理解、代码生成和多模态任务中的广泛应用&#xff0c;模型的实用性、可部署性…

Qwen2.5-7B部署降本增效:混合精度推理实战优化教程

Qwen2.5-7B部署降本增效&#xff1a;混合精度推理实战优化教程 1. 引言&#xff1a;为何选择Qwen2.5-7B进行高效推理部署&#xff1f; 随着大语言模型&#xff08;LLM&#xff09;在实际业务场景中的广泛应用&#xff0c;如何在保证生成质量的前提下降低推理成本、提升响应速度…

一文说清RS485通讯的地址帧与数据帧格式

搞懂RS485通信&#xff1a;地址帧与数据帧到底怎么配合工作&#xff1f;在工业现场&#xff0c;你有没有遇到过这样的问题&#xff1a;多个传感器挂在同一根总线上&#xff0c;主机一发命令&#xff0c;好几个设备同时响应&#xff0c;结果信号打架、数据错乱&#xff1f;或者明…

C++中const的简单用法

C是C语言的继承&#xff0c;它既可以进行C语言的过程化程序设计&#xff0c;又可以进行以抽象数据类型为特点的基于对象的程序设计&#xff0c;还可以进行以继承和多态为特点的面向对象的程序设计。C擅长面向对象程序设计的同时&#xff0c;还可以进行基于过程的程序设计&#…

Qwen2.5-7B语音助手集成:与TTS系统的联合部署案例

Qwen2.5-7B语音助手集成&#xff1a;与TTS系统的联合部署案例 1. 引言&#xff1a;构建下一代智能语音交互系统 随着大语言模型&#xff08;LLM&#xff09;在自然语言理解与生成能力上的飞速发展&#xff0c;将高质量语言模型与语音合成技术&#xff08;TTS&#xff09;结合&…

Qwen2.5-7B是否适合边缘设备?轻量化部署可行性分析

Qwen2.5-7B是否适合边缘设备&#xff1f;轻量化部署可行性分析 1. 背景与问题提出 随着大语言模型&#xff08;LLM&#xff09;在自然语言理解、代码生成和多模态任务中的广泛应用&#xff0c;如何将高性能模型部署到资源受限的边缘设备成为业界关注的核心议题。阿里云最新发布…

Qwen2.5-7B实战案例:医疗问答机器人搭建详细步骤

Qwen2.5-7B实战案例&#xff1a;医疗问答机器人搭建详细步骤 1. 引言&#xff1a;为什么选择Qwen2.5-7B构建医疗问答系统&#xff1f; 1.1 医疗场景下的AI需求与挑战 在医疗健康领域&#xff0c;用户对信息的准确性、专业性和响应速度要求极高。传统搜索引擎或通用聊天机器人…

Qwen2.5-7B架构解析:Transformer优化设计

Qwen2.5-7B架构解析&#xff1a;Transformer优化设计 1. 技术背景与核心价值 近年来&#xff0c;大语言模型&#xff08;LLM&#xff09;在自然语言理解、代码生成、多轮对话等任务中展现出惊人的能力。阿里云推出的 Qwen2.5 系列 是对前代 Qwen2 的全面升级&#xff0c;其中 …