使用C#代码在 Excel 中获取工作表名称

在 Excel 中,工作表名称可以作为工作簿内容的一种元数据。通过获取这些名称的列表,可以大致了解每个工作表的用途,并概览某类数据存储的位置。这对于较大的工作簿或团队协作尤其有用。本文将介绍如何使用 Spire.XLS for .NET 在 C# 中获取 Excel 工作表名称。

安装 Spire.XLS for .NET

首先,您需要将 Spire.XLS for .NET 包中的 DLL 文件添加为 .NET 项目的引用。DLL 文件可以通过此链接下载,也可以通过 NuGet 安装。

PM> Install-Package Spire.XLS

在 C# 中获取 Excel 中的所有工作表名称

Worksheet.Name属性返回工作表的名称。要获取 Excel 中所有工作表的名称(包括隐藏的工作表),可以遍历每个工作表并使用此属性获取它们的名称。

示例代码如下:

using Spire.Xls; using Spire.Xls.Collections; namespace WorksheetName { class Program { static void Main(string[] args) { // 创建一个 Workbook 对象 Workbook workbook = new Workbook(); // 加载 Excel 文档 workbook.LoadFromFile("Budget.xlsx"); // 获取 Excel 中的所有工作表 WorksheetsCollection worksheets = workbook.Worksheets; // 遍历每一个工作表 foreach (Worksheet sheet in worksheets) { // 获取工作表名称 Console.WriteLine(sheet.Name); } } } }

在 C# 中获取 Excel 隐藏工作表名称

如果你只需要获取隐藏工作表的名称,可以先遍历每一个工作表,判断其是否为隐藏状态;如果是隐藏工作表,则通过Worksheet.Name属性获取其名称。

示例代码如下:

using Spire.Xls; using Spire.Xls.Collections; namespace HiddenSheetsName { class Program { static void Main(string[] args) { // 创建一个 Workbook 对象 Workbook workbook = new Workbook(); // 加载 Excel 文档 workbook.LoadFromFile("E:\\PythonExcel\\Monthly company budget.xlsx"); // 获取 Excel 中的所有工作表 WorksheetsCollection worksheets = workbook.Worksheets; // 遍历每一个工作表 foreach (Worksheet sheet in worksheets) { // 判断是否为隐藏工作表 if (sheet.Visibility == WorksheetVisibility.Hidden) { // 获取隐藏工作表的名称 Console.WriteLine(sheet.Name); } } } } }

申请临时许可证

如果您希望移除生成文档中的评估提示,或解除功能限制,请为自己申请一个为期 30 天的试用许可证。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1137641.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qwen2.5-7B多语言混输:混合语言处理

Qwen2.5-7B多语言混输:混合语言处理 1. 技术背景与核心价值 随着全球化信息交互的加速,多语言混合输入已成为自然语言处理(NLP)领域的重要挑战。用户在实际交流中常常无意识地切换语言,例如在中文对话中夹杂英文术语…

Qwen2.5-7B参数详解:28层transformers架构部署须知

Qwen2.5-7B参数详解:28层transformers架构部署须知 1. 技术背景与核心价值 随着大语言模型在自然语言理解、代码生成和多模态任务中的广泛应用,高效、可扩展且具备强推理能力的模型架构成为工程落地的关键。阿里云推出的 Qwen2.5-7B 是 Qwen 系列中参数…

项目应用示例:Reflect API在ES6中的作用

Reflect API:ES6 中被低估的元编程基石 你有没有遇到过这样的场景? 调试一个响应式框架时,发现数据变了但视图没更新——翻源码才发现,是某个 this 指向出了问题; 写了个 Proxy 代理对象来监听属性变化&#xff0…

SpringBoot+SpringAI实战:30分钟搭建你的第一个智能应用

SpringAI是Spring生态下的一个全新项目,核心目标是为Java开发者提供一套简单、统一的API,快速集成各类AI大模型能力,无需关注不同厂商API的差异。 核心优势: 统一API:对接不同大模型无需修改核心代码,切换模…

ECU实现UDS 27服务时的RAM资源优化建议

如何在资源受限的ECU中高效实现UDS 27服务?这4个RAM优化技巧你必须掌握最近在调试一个车身控制器(BCM)的诊断功能时,遇到了一个典型问题:明明只加了一个安全访问功能,系统却频繁触发内存溢出告警。排查后发…

Qwen2.5-7B推理加速:SwiGLU激活函数优化实战

Qwen2.5-7B推理加速:SwiGLU激活函数优化实战 1. 引言:为何关注Qwen2.5-7B的推理性能? 1.1 大模型推理的现实挑战 随着大语言模型(LLM)在实际应用中的广泛部署,推理延迟和显存占用成为制约用户体验的关键…

OpenMV机器视觉项目开发流程:实战案例分享经验总结

用OpenMV做机器视觉?别再从零试错了!一位工程师的实战避坑指南你有没有过这样的经历:花了几百块买了OpenMV,兴致勃勃地接上摄像头、写好颜色识别代码,结果在实验室跑得好好的程序,一到现场就“抽风”——一…

银行业一体化智能可观测平台选型指南——聚焦业务价值,保障核心业务稳定运行

在数字化转型进入深水区的今天,银行业务线上化、架构微服务化、基础设施云化已成常态,这既带来了业务创新的敏捷性,也让IT系统复杂度呈指数级增长。一次支付超时、一笔理财交易失败,不仅影响客户体验与品牌声誉,更可能…

Qwen2.5-7B免费部署方案:利用社区资源运行大模型实战

Qwen2.5-7B免费部署方案:利用社区资源运行大模型实战 1. 背景与技术价值 1.1 大模型平民化趋势下的部署需求 随着大语言模型(LLM)在自然语言理解、代码生成、多轮对话等任务中展现出惊人能力,越来越多开发者和企业希望将这些模…

Qwen2.5-7B推理速度优化:降低延迟的5个关键步骤

Qwen2.5-7B推理速度优化:降低延迟的5个关键步骤 1. 引言:为何需要优化Qwen2.5-7B的推理延迟? 1.1 大模型推理的现实挑战 随着大语言模型(LLM)在实际业务场景中的广泛应用,推理延迟已成为影响用户体验的关…

Qwen2.5-7B中文诗歌创作:文学生成应用

Qwen2.5-7B中文诗歌创作:文学生成应用 1. 技术背景与应用场景 随着大语言模型在自然语言理解与生成能力上的持续突破,AI参与文学创作已从概念验证走向实际落地。阿里云推出的 Qwen2.5-7B 模型,作为 Qwen 系列中参数规模为 76.1 亿的中等体量…

Qwen2.5-7B文本摘要生成:长文档处理技巧

Qwen2.5-7B文本摘要生成:长文档处理技巧 1. 技术背景与挑战 随着大语言模型在自然语言处理任务中的广泛应用,长文档的自动摘要生成已成为信息提取、内容聚合和知识管理的核心需求。传统摘要模型受限于上下文长度(通常为512或1024 tokens&am…

如何高效部署Qwen2.5-7B?网页服务接入实战步骤详解

如何高效部署Qwen2.5-7B?网页服务接入实战步骤详解 1. 引言:为什么选择 Qwen2.5-7B 进行网页推理? 随着大语言模型(LLM)在自然语言理解与生成任务中的广泛应用,越来越多企业与开发者希望将高性能模型快速集…

Qwen2.5-7B部署教程:基于transformers架构的环境配置详解

Qwen2.5-7B部署教程:基于transformers架构的环境配置详解 1. 引言 1.1 模型背景与技术定位 Qwen2.5-7B 是阿里云最新发布的开源大语言模型,属于 Qwen 系列中参数规模为 76.1 亿(非嵌入参数 65.3 亿)的中等体量模型。该模型在 Qw…

Qwen2.5-7B多模型协作:与其他AI服务集成方案

Qwen2.5-7B多模型协作:与其他AI服务集成方案 1. 技术背景与集成价值 随着大语言模型(LLM)在自然语言理解、代码生成和多模态任务中的广泛应用,单一模型已难以满足复杂业务场景的需求。Qwen2.5-7B 作为阿里云最新发布的中等规模开…

Qwen2.5-7B实时推理:低延迟应用场景实现

Qwen2.5-7B实时推理:低延迟应用场景实现 1. 引言:为何需要低延迟的Qwen2.5-7B推理方案? 随着大语言模型(LLM)在客服、智能助手、代码生成等场景中的广泛应用,低延迟实时推理已成为决定用户体验和系统可用性…

Qwen2.5-7B语音助手:与TTS/ASR集成方案

Qwen2.5-7B语音助手:与TTS/ASR集成方案 1. 引言:构建下一代智能语音交互系统 随着大语言模型(LLM)在自然语言理解与生成能力上的飞速发展,语音助手正从“关键词匹配”迈向“语义理解自然对话”时代。Qwen2.5-7B作为阿…

一文说清MISRA C++与普通C++的关键差异

从“自由”到“可控”:MISRA C 如何重塑嵌入式C开发你有没有在深夜调试过一个莫名其妙的崩溃?内存访问越界、指针野了、异常没捕获、浮点比较失准……这些问题,在普通C项目中或许还能靠测试“撞出来”,但在汽车电控、飞行控制或医…

招聘流程越复杂越好吗?HR的效率真相

5轮面试、3份测评、2轮背调……流程看似严谨,却导致优质候选人纷纷放弃?2026年,招聘流程的价值不在于“多”,而在于“准”和“快”。过度复杂的流程非但不能提升质量,反而成为人才流失的第一推手。一、现实悖论&#x…

Qwen2.5-7B视频摘要:长视频内容浓缩技术

Qwen2.5-7B视频摘要:长视频内容浓缩技术 随着视频内容在社交媒体、在线教育和企业培训等领域的爆炸式增长,如何高效提取和理解长视频的核心信息成为一项关键技术挑战。传统的人工摘要方式耗时耗力,而自动化视频摘要技术则面临语义理解深度不…