SpringBoot+SpringAI实战:30分钟搭建你的第一个智能应用

SpringAI是Spring生态下的一个全新项目,核心目标是为Java开发者提供一套简单、统一的API,快速集成各类AI大模型能力,无需关注不同厂商API的差异。

核心优势:
统一API:对接不同大模型无需修改核心代码,切换模型像切换数据源一样简单
开箱即用:内置请求重试、超时控制、响应缓存等常用功能,减少重复编码
无缝集成Spring生态:完美兼容SpringBoot、Spring Cloud等,符合Java开发者的使用习惯
支持多场景:涵盖文本对话、图片生成、语音转文字、embedding向量生成等主流AI场景

本次实战我们以“对接OpenAI的ChatGPT模型”为例,开发一个简单的智能对话接口。后续会补充如何切换到国内大模型(如通义千问)。前置准备
JDK 17+(SpringAI部分特性依赖JDK 17)
Maven 3.6+
一个OpenAI API Key(从OpenAI官网申请,注意保存好,后续配置用)
开发工具:IDEA(推荐)

项目创建与依赖配置

使用Spring Initializr创建项目,选择Spring Boot 3.2.5版本,添加spring-boot-starter-web和Lombok依赖。手动在pom.xml中添加SpringAI OpenAI Starter:

<dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-openai-spring-boot-starter</artifactId><version>0.8.1</version></dependency>

配置文件设置

application.yml中配置OpenAI参数,建议将API Key存储在环境变量中:

spring:ai:openai:api-key:${OPENAI_API_KEY}chat:model:gpt-3.5-turbotemperature:0.7

核心代码实现

DTO层设计
@DatapublicclassChatRequest{@NotBlankprivateStringmessage;}@Data@BuilderpublicclassChatResponse{privateIntegercode;privateStringmsg;privateStringcontent;}
服务层实现
@Service@RequiredArgsConstructorpublicclassChatServiceImplimplementsChatService{privatefinalChatClientchatClient;@OverridepublicChatResponsechat(ChatRequestrequest){try{Stringresponse=chatClient.call(request.getMessage());returnChatResponse.builder().code(200).msg("Success").content(response).build();}catch(Exceptione){returnChatResponse.builder().code(500).msg(e.getMessage()).content("").build();}}}
控制层优化
@RestController@RequestMapping("/api/ai")@RequiredArgsConstructorpublicclassChatController{privatefinalChatServicechatService;@PostMapping("/chat")publicResponseEntity<ChatResponse>chat(@Valid@RequestBodyChatRequestrequest){returnResponseEntity.ok(chatService.chat(request));}}

异常处理增强

添加全局异常处理器:

@ControllerAdvicepublicclassGlobalExceptionHandler{@ExceptionHandler(Exception.class)publicResponseEntity<ChatResponse>handleException(Exceptione){returnResponseEntity.status(500).body(ChatResponse.builder().code(500).msg(e.getMessage()).build());}}

测试验证

创建测试类验证功能:

@SpringBootTest@AutoConfigureMockMvcclassChatControllerTest{@AutowiredprivateMockMvcmockMvc;@TestvoidtestChatEndpoint()throwsException{Stringrequest="{\"message\":\"Java有哪些特性?\"}";mockMvc.perform(post("/api/ai/chat").contentType(MediaType.APPLICATION_JSON).content(request)).andExpect(status().isOk()).andExpect(jsonPath("$.code").value(200));}}

性能优化建议

添加连接池配置提升性能:

spring:ai:openai:client:connect-timeout:5000read-timeout:30000

安全增强

建议在Controller添加速率限制:

@RateLimiter(value=10)// 每秒10次请求@PostMapping("/chat")publicResponseEntity<ChatResponse>chat(@Valid@RequestBodyChatRequestrequest){// ...}

国内模型切换示例

若要切换至通义千问,只需修改依赖和配置:

<dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-qwen-spring-boot-starter</artifactId><version>0.8.1</version></dependency>

对应配置调整为:

spring:ai:qwen:api-key:${QWEN_API_KEY}chat:model:qwen-turbo

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1137637.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ECU实现UDS 27服务时的RAM资源优化建议

如何在资源受限的ECU中高效实现UDS 27服务&#xff1f;这4个RAM优化技巧你必须掌握最近在调试一个车身控制器&#xff08;BCM&#xff09;的诊断功能时&#xff0c;遇到了一个典型问题&#xff1a;明明只加了一个安全访问功能&#xff0c;系统却频繁触发内存溢出告警。排查后发…

Qwen2.5-7B推理加速:SwiGLU激活函数优化实战

Qwen2.5-7B推理加速&#xff1a;SwiGLU激活函数优化实战 1. 引言&#xff1a;为何关注Qwen2.5-7B的推理性能&#xff1f; 1.1 大模型推理的现实挑战 随着大语言模型&#xff08;LLM&#xff09;在实际应用中的广泛部署&#xff0c;推理延迟和显存占用成为制约用户体验的关键…

OpenMV机器视觉项目开发流程:实战案例分享经验总结

用OpenMV做机器视觉&#xff1f;别再从零试错了&#xff01;一位工程师的实战避坑指南你有没有过这样的经历&#xff1a;花了几百块买了OpenMV&#xff0c;兴致勃勃地接上摄像头、写好颜色识别代码&#xff0c;结果在实验室跑得好好的程序&#xff0c;一到现场就“抽风”——一…

银行业一体化智能可观测平台选型指南——聚焦业务价值,保障核心业务稳定运行

在数字化转型进入深水区的今天&#xff0c;银行业务线上化、架构微服务化、基础设施云化已成常态&#xff0c;这既带来了业务创新的敏捷性&#xff0c;也让IT系统复杂度呈指数级增长。一次支付超时、一笔理财交易失败&#xff0c;不仅影响客户体验与品牌声誉&#xff0c;更可能…

Qwen2.5-7B免费部署方案:利用社区资源运行大模型实战

Qwen2.5-7B免费部署方案&#xff1a;利用社区资源运行大模型实战 1. 背景与技术价值 1.1 大模型平民化趋势下的部署需求 随着大语言模型&#xff08;LLM&#xff09;在自然语言理解、代码生成、多轮对话等任务中展现出惊人能力&#xff0c;越来越多开发者和企业希望将这些模…

Qwen2.5-7B推理速度优化:降低延迟的5个关键步骤

Qwen2.5-7B推理速度优化&#xff1a;降低延迟的5个关键步骤 1. 引言&#xff1a;为何需要优化Qwen2.5-7B的推理延迟&#xff1f; 1.1 大模型推理的现实挑战 随着大语言模型&#xff08;LLM&#xff09;在实际业务场景中的广泛应用&#xff0c;推理延迟已成为影响用户体验的关…

Qwen2.5-7B中文诗歌创作:文学生成应用

Qwen2.5-7B中文诗歌创作&#xff1a;文学生成应用 1. 技术背景与应用场景 随着大语言模型在自然语言理解与生成能力上的持续突破&#xff0c;AI参与文学创作已从概念验证走向实际落地。阿里云推出的 Qwen2.5-7B 模型&#xff0c;作为 Qwen 系列中参数规模为 76.1 亿的中等体量…

Qwen2.5-7B文本摘要生成:长文档处理技巧

Qwen2.5-7B文本摘要生成&#xff1a;长文档处理技巧 1. 技术背景与挑战 随着大语言模型在自然语言处理任务中的广泛应用&#xff0c;长文档的自动摘要生成已成为信息提取、内容聚合和知识管理的核心需求。传统摘要模型受限于上下文长度&#xff08;通常为512或1024 tokens&am…

如何高效部署Qwen2.5-7B?网页服务接入实战步骤详解

如何高效部署Qwen2.5-7B&#xff1f;网页服务接入实战步骤详解 1. 引言&#xff1a;为什么选择 Qwen2.5-7B 进行网页推理&#xff1f; 随着大语言模型&#xff08;LLM&#xff09;在自然语言理解与生成任务中的广泛应用&#xff0c;越来越多企业与开发者希望将高性能模型快速集…

Qwen2.5-7B部署教程:基于transformers架构的环境配置详解

Qwen2.5-7B部署教程&#xff1a;基于transformers架构的环境配置详解 1. 引言 1.1 模型背景与技术定位 Qwen2.5-7B 是阿里云最新发布的开源大语言模型&#xff0c;属于 Qwen 系列中参数规模为 76.1 亿&#xff08;非嵌入参数 65.3 亿&#xff09;的中等体量模型。该模型在 Qw…

Qwen2.5-7B多模型协作:与其他AI服务集成方案

Qwen2.5-7B多模型协作&#xff1a;与其他AI服务集成方案 1. 技术背景与集成价值 随着大语言模型&#xff08;LLM&#xff09;在自然语言理解、代码生成和多模态任务中的广泛应用&#xff0c;单一模型已难以满足复杂业务场景的需求。Qwen2.5-7B 作为阿里云最新发布的中等规模开…

Qwen2.5-7B实时推理:低延迟应用场景实现

Qwen2.5-7B实时推理&#xff1a;低延迟应用场景实现 1. 引言&#xff1a;为何需要低延迟的Qwen2.5-7B推理方案&#xff1f; 随着大语言模型&#xff08;LLM&#xff09;在客服、智能助手、代码生成等场景中的广泛应用&#xff0c;低延迟实时推理已成为决定用户体验和系统可用性…

Qwen2.5-7B语音助手:与TTS/ASR集成方案

Qwen2.5-7B语音助手&#xff1a;与TTS/ASR集成方案 1. 引言&#xff1a;构建下一代智能语音交互系统 随着大语言模型&#xff08;LLM&#xff09;在自然语言理解与生成能力上的飞速发展&#xff0c;语音助手正从“关键词匹配”迈向“语义理解自然对话”时代。Qwen2.5-7B作为阿…

一文说清MISRA C++与普通C++的关键差异

从“自由”到“可控”&#xff1a;MISRA C 如何重塑嵌入式C开发你有没有在深夜调试过一个莫名其妙的崩溃&#xff1f;内存访问越界、指针野了、异常没捕获、浮点比较失准……这些问题&#xff0c;在普通C项目中或许还能靠测试“撞出来”&#xff0c;但在汽车电控、飞行控制或医…

招聘流程越复杂越好吗?HR的效率真相

5轮面试、3份测评、2轮背调……流程看似严谨&#xff0c;却导致优质候选人纷纷放弃&#xff1f;2026年&#xff0c;招聘流程的价值不在于“多”&#xff0c;而在于“准”和“快”。过度复杂的流程非但不能提升质量&#xff0c;反而成为人才流失的第一推手。一、现实悖论&#x…

Qwen2.5-7B视频摘要:长视频内容浓缩技术

Qwen2.5-7B视频摘要&#xff1a;长视频内容浓缩技术 随着视频内容在社交媒体、在线教育和企业培训等领域的爆炸式增长&#xff0c;如何高效提取和理解长视频的核心信息成为一项关键技术挑战。传统的人工摘要方式耗时耗力&#xff0c;而自动化视频摘要技术则面临语义理解深度不…

DNS负载均衡能自动避开故障服务器吗?

在现代互联网架构中&#xff0c;DNS 负载均衡是一种非常常见的技术&#xff0c;它常被用来提升网站访问的稳定性和性能。对于新手来说&#xff0c;听到“DNS 负载均衡”可能会想象成服务器自己会自动分配流量&#xff0c;甚至能像高级的负载均衡器一样&#xff0c;当某台服务器…

抱脸(huggingface)的使用姿势

抱脸&#xff08;huggingface&#xff09;的使用姿势 简介 抱脸huggingface.co&#xff0c;其实早知道他有一个很好的免费资源给到所有用户&#xff1a;2c16g 这个配置&#xff0c;也许扛不动太多的流量业务&#xff0c;但是足够部署各种学习和测试环境了。一直没动心思&#x…

Qwen2.5-7B能否处理复杂逻辑?结构化输出实战验证

Qwen2.5-7B能否处理复杂逻辑&#xff1f;结构化输出实战验证 1. 引言&#xff1a;为何关注Qwen2.5-7B的逻辑与结构化能力&#xff1f; 随着大模型在企业级应用中的深入&#xff0c;能否准确理解并生成结构化数据&#xff0c;已成为衡量其工程价值的关键指标。尤其是在金融风控…

基于大数据的心脏病数据分析系统【附源码+文档】

&#x1f495;&#x1f495;作者&#xff1a; 米罗学长 &#x1f495;&#x1f495;个人简介&#xff1a;混迹java圈十余年&#xff0c;精通Java、小程序、数据库等。 &#x1f495;&#x1f495;各类成品Java毕设 。javaweb&#xff0c;ssm&#xff0c;springboot等项目&#…