方法学革新:工具变量因果森林如何破解因果谜题?

源自风暴统计网:一键统计分析与绘图的网站

最近老郑分享了很多因果推断的前沿方法学推文,今天介绍另一种前沿方法,工具变量因果森林。

2025年11月发表在《International Journal of Epidemiology》(医学二区,IF=5.9)的一项研究,是一篇典型的因果推断研究,采用工具变量因果森林这一前沿机器学习方法,探究退休对认知功能的异质性影响。

下面一起从这篇文章中学习一下这个前沿方法!


研究争议,退休与认知功能的谜题

“我是不是该晚点退休,多动动脑子防痴呆?”这可能是很多人的传统观念,许多临近退休的人都有这样的担忧。

一些研究认为,工作能保持大脑活跃,退休会导致“用进废退”;另一些研究则发现,工作压力可能加速认知衰退,退休反而是解脱。

因此,本研究探讨了退休是否对认知功能有影响?这种影响是否因个体特征和国家背景而异?

研究团队使用了三个国际标准化老龄化调查的三波次数据:HRS(美国健康与退休研究)、ELSA(英国老龄化追踪研究)、SHARE(欧洲健康、老龄化与退休调查)。

研究涵盖三个时间段数据,严格分离暴露、协变量与结局的测量时间点,避免反向因果。

  • 第一波(2014/2015):收集60个基线协变量

  • 第二波(2016/2017):确定退休状态

  • 第三波(2018/2019):评估认知功能结局

研究选择“国家法定退休年龄”作为退休的工具变量,解决退休决策的内生性问题,这让研究者能够区分退休的真正影响,而不是其他混淆因素。”

结局变量:认知功能。情景记忆被用作衡量认知功能的一项指标。情景记忆指的是回忆过去经历的能力,这一能力通常会随着年龄的增长而下降。参与者听到了 10 个常见的单词,并立即由采访者要求他们尽可能多地回忆这些单词。大约 5 分钟后,他们又被要求再次回忆这些单词。因此,他们回忆起的单词总数(范围从 0 到 20 个)代表了他们的情景记忆功能,这与之前的研究结果一致。

方法革新,机器学习破解因果关系难题

研究者比较了使用四种方法估计的平均处理效应(ATE)。

  • 参数化的普通最小二乘法 (OLS)

  • 两阶段最小二乘法 (2SLS)

  • 不含工具变量的非参数因果森林 (non-IV forests)

  • 工具变量因果森林 (IV forests)

对于参数化方法,研究者根据在已训练的工具变量因果森林中的重要性,选择了10个协变量进行调整。

非参数方法的平均处理效应通过残差对残差回归法获得。

✅ 接下来重点讲讲工具变量因果森林方法如何应用的。

1.工具变量因果森林方法将用于工具变量估计的广义矩估计法,与随机森林相结合,以识别相似的处理效应。

2.工具变量因果森林纳入了来自第一波调查的60个经过协调统一的协变量。

3.为了减轻潜在的反向因果关系,纳入了认知功能的基线得分。

4.研究者假设数据为随机缺失,缺失值使用基于随机森林的算法进行填补。

5.训练完成后,由于极端倾向得分会破坏估计的稳定性,所以研究者将分析限制在退休倾向得分介于0.1至0.9之间的7432名个体。相当于排除了那些“无论如何都会退休”和“无论如何都不会退休”的极端人群,专注于那些退休决定可能受到政策影响的人群,使结果更具政策参考价值。

因此,这项研究的工具变量因果森林估计量代表的是重叠人口上的条件局部平均处理效应(CLATO)。

6.随后,将观测值按条件局部平均处理效应从Q1到Q5分为五等分组,并比较了各组间在社会人口学特征、健康与行为以及国家分布上的差异。

7.P值使用Bonferroni方法进行了调整。

8.敏感性分析:进行了多项敏感性分析以确认研究结果的稳健性。这些分析包括:将样本限制在55至75岁之间、排除部分退休的个体、仅分析全职雇员,以及排除样本量最大的美国数据。

退休对认知功能有显著的积极影响

1.整体效应

  • 研究使用最前沿的工具变量因果森林方法估计,退休者比仍在工作者平均能多回忆1.348个单词。

  • 传统的工具变量方法(2SLS)也发现了正向关联(0.962个单词),但效应值小于IV森林的估计。

  • 使用普通最小二乘法(OLS)和非工具变量法的因果森林构建的初步分析未发现退休与认知功能之间存在关联。

  • 工具变量的有效性通过 F 统计量 163.037(P < 0.0001)和Sargan统计量 1.177(P = 0.28)得到证实。

敏感性分析证实了主要发现的可靠性。

2.异质性分析

研究根据“条件局部平均处理效应(CLATO)”将人群分为五组(Q1受益最小,Q5受益最大),发现:

工具变量因果森林在这一研究中的应用,展示了机器学习与因果推断融合的巨大潜力

随着大数据和算法技术的进步,这种数据驱动、灵活捕捉异质性的方法,有望在公共卫生、社会政策等领域发挥更大作用,帮助我们发现更细致、更个性化的因果规律。

因果推断方法要好好学起来了!

参考文献:Sato K, Noguchi H, Inoue K. Heterogeneity in the association between retirement and cognitive function: a machine learning analysis across 19 countries. Int J Epidemiol. 2025 Oct 14;54(6):dyaf201. doi: 10.1093/ije/dyaf201.


最后,在文末给郑老师我们团队打个广告吧,大家不要见怪哈!

我们将提供专业的临床试验项目设计与分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1137402.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Altium Designer中PCB线宽与电流关系的全面讲解

Altium Designer中PCB线宽与电流关系的全面讲解从一个真实问题说起&#xff1a;为什么我的电源走线发烫了&#xff1f;你有没有遇到过这样的情况——电路板调试时&#xff0c;手指刚碰到某根走线就猛地缩回来&#xff1f;“这线怎么这么烫&#xff01;”更糟的是&#xff0c;连…

Prudentia Sciences宣布完成由McKesson Ventures领投的A轮融资,加速生命科学交易的尽职调查

生命科学交易领域AI原生尽职调查的先驱Prudentia Sciences今日宣布完成2000万美元A轮融资。本轮融资由McKesson Ventures领投&#xff0c;SignalFire参投。现有投资者包括Iaso Ventures、Virtue和GV。继2024年完成700万美元种子轮融资后&#xff0c;该公司的融资总额已达2700万…

电商智能客服:从成本中心到价值中枢的行业转型核心

一、行业核心矛盾&#xff1a;服务同质化与价值创造缺口的双重困境当前电商行业竞争已从产品、价格维度转向服务深水区&#xff0c;传统客服模式面临 “低效成本消耗” 与 “价值创造不足” 的双重瓶颈。一方面&#xff0c;70% 的咨询集中于物流查询、商品参数、退换货规则等重…

Science最新文章:大型语言模型时代的科学生产

Scientific production in the era of large language models大型语言模型时代的科学生产随着生产过程的快速演变&#xff0c;科学政策必须考虑机构如何实现转型大语言模型对科学研究影响的宏观评估背景尽管生成式人工智能在各学科领域迅速普及&#xff0c;但其实际影响的实证证…

如何在仅持有 IPA 文件的情况下保护 iOS 应用代码安全

很多人第一次真正重视 iOS 代码保护&#xff0c;往往不是在开发阶段&#xff0c;而是在 IPA 已经交付、源码无法再改动 的时候。 可能是渠道合作、外包交付、历史项目&#xff0c;手里只有一个 ipa&#xff0c;但已经意识到&#xff1a; 这个包一旦被反编译&#xff0c;几乎没有…

Qwen2.5-7B模型监控方案:性能与异常实时检测

Qwen2.5-7B模型监控方案&#xff1a;性能与异常实时检测 1. 引言&#xff1a;为何需要对Qwen2.5-7B进行实时监控&#xff1f; 随着大语言模型&#xff08;LLM&#xff09;在实际业务场景中的广泛应用&#xff0c;模型的稳定性、响应性能和运行健康度已成为影响用户体验和系统可…

Qwen2.5-7B应用分享:智能编程调试助手开发

Qwen2.5-7B应用分享&#xff1a;智能编程调试助手开发 1. 引言&#xff1a;为何需要基于Qwen2.5-7B的智能编程助手 1.1 当前编程调试的痛点 在现代软件开发中&#xff0c;开发者面临日益复杂的代码逻辑、多语言环境和快速迭代的压力。尤其是在处理错误堆栈、理解第三方库行为…

Qwen2.5-7B版本升级:从旧版迁移的注意事项

Qwen2.5-7B版本升级&#xff1a;从旧版迁移的注意事项 1. 背景与升级动因 1.1 Qwen2.5-7B 模型定位 Qwen2.5-7B 是阿里云最新发布的 76.1亿参数 大语言模型&#xff0c;属于 Qwen2.5 系列中的中等规模指令调优版本。相比前代 Qwen2-7B&#xff0c;该模型在多个维度实现了显著…

ITRS收购IP-Label以增强数字体验监测能力并拓展欧洲业务版图

本次战略收购为公司带来310余家企业客户及成熟的Ekara DEM平台&#xff0c;巩固ITRS作为金融服务及受监管企业领先可观测性平台的地位ITRS是金融服务及受监管行业实时IT监测与可观测性解决方案的领先供应商。该公司今日宣布已签署最终协议&#xff0c;收购总部位于法国的顶级数…

理解PCB铺铜如何改善电路板整体接地性能

如何用PCB铺铜“驯服”地噪声&#xff1f;一位硬件工程师的实战笔记最近在调试一块高速数据采集板时&#xff0c;ADC的输出频谱上总有一堆说不清道不明的杂散信号。电源纹波查了、时钟抖动测了、屏蔽也做了——最后发现&#xff0c;罪魁祸首竟是那块你以为“随便铺一下就行”的…

面对国自然基金申请,如何撰写一份逻辑清晰且具竞争力的申请书?

每年的国家自然科学基金&#xff08;NSFC&#xff09;申请季&#xff0c;对于科研人员而言&#xff0c;不仅是一场学术实力的较量&#xff0c;更是一次对心力与体力的极限挑战。在实验室里日夜攻关&#xff0c;积累了大量的实验数据和前沿想法&#xff0c;但当真正落笔开始撰写…

Qwen2.5-7B模型架构:技术细节深入剖析

Qwen2.5-7B模型架构&#xff1a;技术细节深入剖析 1. 技术背景与核心价值 近年来&#xff0c;大语言模型&#xff08;LLM&#xff09;在自然语言理解、代码生成、多轮对话等任务中展现出惊人的能力。阿里云推出的 Qwen2.5 系列 是对前代 Qwen2 的全面升级&#xff0c;覆盖从 0…

一文搞懂机器学习入门知识!

推荐直接网站在线阅读&#xff1a;aicoting AI算法面试学习在线网站 定义与核心思想 学习一个知识最重要的就是要知道这个知识的定义&#xff0c;定义虽然大多晦涩&#xff0c;却是最能完整清晰的表达这个知识的一种表达方式&#xff0c;那么机器学习的定义是什么呢&#xff1…

Modbus协议工业级脉冲模块,为农业自动化实践保驾护航

工业级脉冲输出模块(一种能产生和控制脉冲电信号输出的设备)是农业自动化领域的核心控制部件&#xff0c;它通过发送精密、可控的电子脉冲指令来直接驱动各类执行机构(如阀门、电机)&#xff0c;从而实现了对水、肥、药及能源的精准管理。一、 应用逻辑 工业级脉冲输出模块是农…

Qwen2.5-7B角色定制教程:打造专属AI虚拟助手

Qwen2.5-7B角色定制教程&#xff1a;打造专属AI虚拟助手 1. 引言&#xff1a;为什么需要角色定制化的AI助手&#xff1f; 随着大语言模型&#xff08;LLM&#xff09;在自然语言理解与生成能力上的飞速发展&#xff0c;用户不再满足于“通用型”对话机器人。无论是企业客服、教…

Qwen2.5-7B搜索引擎:智能问答增强实现方案

Qwen2.5-7B搜索引擎&#xff1a;智能问答增强实现方案 1. 技术背景与问题提出 随着大语言模型&#xff08;LLM&#xff09;在自然语言理解、生成和推理能力上的持续突破&#xff0c;传统搜索引擎正面临从“关键词匹配”向“语义理解智能生成”的范式转变。尽管现有搜索引擎能快…

Qwen2.5-7B知识问答系统:企业知识库智能搜索方案

Qwen2.5-7B知识问答系统&#xff1a;企业知识库智能搜索方案 1. 背景与挑战&#xff1a;企业知识管理的智能化转型 在数字化转型加速的今天&#xff0c;企业积累了海量的非结构化文档——包括产品手册、技术文档、会议纪要、客户沟通记录等。传统的关键词检索方式已难以满足员…

Qwen2.5-7B知识量测试:最新知识覆盖度评估

Qwen2.5-7B知识量测试&#xff1a;最新知识覆盖度评估 1. 技术背景与评测动机 随着大语言模型&#xff08;LLM&#xff09;在自然语言理解、代码生成、数学推理等领域的广泛应用&#xff0c;知识覆盖广度和领域专业深度已成为衡量模型能力的核心指标。阿里云发布的 Qwen2.5 系…

Qwen2.5-7B人力资源:简历分析与筛选系统

Qwen2.5-7B人力资源&#xff1a;简历分析与筛选系统 在现代企业的人力资源管理中&#xff0c;高效、精准的简历筛选已成为招聘流程中的关键环节。传统人工筛选方式耗时耗力&#xff0c;且容易因主观判断导致偏差。随着大语言模型&#xff08;LLM&#xff09;技术的发展&#x…

告别人工调控!工业级可调频脉冲模块守护化工自动化品质

工业级脉冲输出模块在化工行业的应用&#xff0c;核心在于将高精度的数字脉冲指令转化为对阀门、电机、反应装置等关键设备的精准物理控制&#xff0c;从而在高温、高压、腐蚀、防爆等严苛环境下&#xff0c;实现流程的自动化、安全化与精准化。一、应用逻辑 典型系统连接架构为…