逻辑回归中的条件概率

这个式子

读作:“在已知 x 的条件下,y=1 的概率”


1) 每个符号分别是什么意思?

  • y:要预测的“标签/结果”。
    在二分类里通常 y∈{0,1}。
    例:垃圾邮件 y=1,正常邮件 y=0。

  • x:输入特征(你观察到的信息)。
    例:词频、长度、是否包含链接等。

  • :条件符号,意思是“在……条件下 / 已知……”。

  • p(⋅):概率(probability)。

所以整体就是:

给定这个样本的特征 x,它属于正类 1 的概率是多少。


2) 为什么要写成“条件概率”?

因为同一个结果 y 的概率会随着你看到的信息 x 不同而改变。

比如:

  • 如果 x 表示“出现‘免费’次数=2、出现‘会议’次数=0”,那更像垃圾邮件:p(y=1∣x)可能很大。

  • 如果 x 表示“会议=3、免费=0”,那更像正常邮件:p(y=1∣x) 可能很小。

x 是条件,决定概率大小。


3) 和 p(y=1) 有什么区别?

  • p(y=1):不看任何特征时,随机抽一封邮件是垃圾邮件的概率(总体比例)。
    例:全站 10% 是垃圾邮件,那 p(y=1)=0.1。

  • p(y=1∣x):看了这封邮件的特征 x后,它是垃圾邮件的概率。
    例:如果这封邮件“免费、中奖”很多,那可能 p(y=1∣x)=0.85。

所以:

p(y=1) 是“平均概率”,
p(y=1∣x) 是“针对某个样本的个性化概率”。


4) 在逻辑回归里它怎么计算?

逻辑回归认为:

  • 先算线性打分

  • 再用 Sigmoid​ 把它变成 0∼1 的概率


5) 直觉版理解(很像“打分→转成信心”)

  • z 是“垃圾倾向的打分”(正:偏垃圾;负:偏正常)

  • Sigmoid 把打分变成“信心/概率”:

    • (五五开)

    • z 越大 ⇒p 越接近 1

    • z 越小 ⇒p 越接近 0

讲解表达式

这个表达式是逻辑回归(以及许多机器学习模型)的基础公式,看起来像数学,但其实超级简单!它计算一个“分数”或“信号”,然后逻辑回归用它来预测概率。我们用之前的生动风格来拆解它,配上比喻和图示,让它像故事一样易懂。

1. 整体意思:像计算一个“总分”

想象你在评判一个水果是不是“熟了”(分类问题:熟或不熟)。你会看几个特征:颜色(x1)、软硬度(x2)、气味(x3)。每个特征都有“重要性”权重(w1, w2, w3),比如颜色更重要,权重高点。最后加个基础分(b)。

  • z:总分或“线性组合结果”。它是一个数字,代表所有特征加权后的“强度”。在逻辑回归中,这个z会被Sigmoid函数“挤压”成0-1的概率。
  • :权重向量w的转置(上标T表示转置,让向量能相乘)。w像“评委打分表”,每个元素wi对应一个特征的重要性(正数=正面影响,负数=负面影响)。
  • x:输入特征向量,比如[颜色, 软硬度, 气味]的数值列表。
  • b:偏置或截距,像“起始分”,即使所有特征是0,也有个基础值(防止模型太偏)。

公式就是:z = (w1 * x1) + (w2 * x2) + ... + (wn * xn) + b。简单说,先每个特征乘权重求和,再加偏置。

它就是逻辑回归里最核心的“线性打分(linear score)”。你可以把它理解成:把一堆特征按重要性加权求和,再整体平移一下


1) 各个符号是什么意思?

  • x:特征向量(输入)

    例如:词频、身高体重、是否点击过某链接……都可以是特征。

  • w:权重向量(模型要学习的参数)

    每个表示“第 i 个特征对结果有多重要、影响方向是什么”。

  • :向量内积(点积)

    这是“加权求和”。

  • b:偏置/截距(bias/intercept)
    它是一个常数,用来把整体阈值往左/往右平移。

  • z:线性组合得到的一个实数分数(可以是任意正负数)
    之后会丢进 Sigmoid 变成概率。


2) 用一个具体数字例子(手算)

假设:

先算点积:

再加偏置:

所以这个样本的线性打分 z=1.4。


3) w 的正负号代表什么?

  • :特征​ 越大,z 越大 → 更倾向预测 y=1

  • :特征​ 越大,z 越小 → 更倾向预测 y=0

  • 越大:影响越强(同样的变化会带来更大的 z 变化)

比如上例:

  • :出现“免费”越多,越像垃圾邮件

  • :出现“会议”越多,越不像垃圾邮件


4) 为什么要加 b(偏置)?

没有 b 时:

意味着决策边界 z=0 必须经过原点(几何上限制很强)。

加了 b:

决策边界就可以整体平移,不必穿过原点,更灵活、更容易拟合真实数据。

直觉上:

  • b 像“默认倾向/基准阈值”

  • 是“看了特征后对这个默认倾向的修正”


5) 几何直觉(为什么叫“线性”)

在二维时是一条直线;三维是一张平面;更高维是超平面。
逻辑回归就是先用这个线性函数把样本分到边界两侧,然后再用 Sigmoid 把“离边界多远”变成概率。

我们就把“更根上”的那层讲透:为什么也叫logit(对数几率),以及它怎么必然推出 Sigmoid。


1) 先引入两个概念:概率、几率(odds)

  • 概率:p∈(0,1)

  • 几率(odds)

它表示“发生的概率 : 不发生的概率”的比值。

举例:

  • (发生是“不发生”的 4 倍)

  • (五五开)


2) 再取对数:对数几率(log-odds / logit)

为什么要取 log?

  • ​ 的范围是 (0,∞)

  • 取对数后范围变成 (−∞,∞)

这就非常舒服:把(0,1)的概率,变成任意实数,正好适合用线性模型去拟合。


3) 逻辑回归的核心假设

逻辑回归不是直接假设 p 跟特征线性,而是假设:

也就是说:“对数几率”是特征的线性函数
这里右边这坨就是你问的:

所以 z 就是logit 值


4) 从 logit 推回概率:自然得到 Sigmoid

两边取指数:

移项解 p:

这就是 Sigmoid:

所以你看到的那条 S 型曲线,并不是“硬凑的”,而是从“线性 log-odds”推出来的。


5) 系数的含义(非常实用)

因为

当某个特征​ 增加 1(其它不变)时:

  • log-odds 增加

  • odds(几率)会乘上

也就是:

例子:

  • ,则:该特征每+1,几率大约翻2 倍

  • ,则:该特征每+1,几率大约减半

这也是逻辑回归“可解释性强”的原因。


6) 决策边界也更清晰了

所以阈值 0.5 对应的边界就是:

我们就拿前面算过的两个 z(1.4 和 -2.4)把概率 p几率 odds对数几率 log-odds串起来走一遍,你会一眼看懂“为什么 z 叫 logit”。


1) 三者的互相换算(记住这三条就够了)

  • odds(几率)

  • log-odds(对数几率 / logit)

  • 从 z 还原成概率(Sigmoid)


2) 例 1:z=1.4(偏向正类)

(1) 从 z 得到概率

也就是:是正类的概率约 80.22%

(2) 把概率变成 odds

这句话非常直观:

“正类发生的可能性 : 负类发生的可能性 ≈ 4.06 : 1”
(正类大概是负类的 4 倍)

(3) odds 取 log 回到 z

完美对上。


3) 例 2:z=−2.4(偏向负类)

(1) 概率

也就是:是正类的概率约 8.32%

(2) odds

解释成一句话:

“正类 : 负类 ≈ 0.0908 : 1”
等价于负类大约是正类的 11 倍(因为 1/0.0908≈11)

(3) log-odds

也对上。


4) 这就是“为什么 z 特别好用”

  • 概率 p 只能在 0∼1

  • log-odds z可以是任何实数 (−∞,+∞)

  • 所以我们用一个线性模型去刻画它:

    再用 Sigmoid 把它“翻译”回概率。


5) 顺带点出逻辑回归最“可解释”的地方(系数的意义)

因为

如果某个特征 xi​ 增加 1(其它不变),那么 z 增加 wi​,于是:

odds 会乘上

用我们之前的权重举例:

  • ​ 每 +1,几率乘 3.32 倍

  • :x2​ 每 +1,几率大约减半

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1135980.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从零实现:搭建ARM64蓝屏调试环境并进行WinDbg分析

手把手搭建ARM64蓝屏调试环境:从零开始用WinDbg定位系统崩溃你有没有遇到过这样的场景?一台搭载骁龙处理器的Windows on ARM笔记本突然蓝屏,重启后只留下一个MEMORY.DMP文件,而你面对这个“黑盒”毫无头绪。更糟的是,网…

DevicePairingFolder.dll文件丢失找不到问题 免费下载方法分享

在使用电脑系统时经常会出现丢失找不到某些文件的情况,由于很多常用软件都是采用 Microsoft Visual Studio 编写的,所以这类软件的运行需要依赖微软Visual C运行库,比如像 QQ、迅雷、Adobe 软件等等,如果没有安装VC运行库或者安装…

研究发现商业AI模型可完整还原《哈利·波特》原著内容

机器学习模型,特别是商业模型,通常不会公开开发者用于训练的数据集。然而,模型包含哪些内容以及这些材料是否能通过特定提示被提取出来,仍然是具有经济和法律后果的重要问题,更不用说伦理和隐私方面的考量。 Anthropic…

DDACLSys.dll文件丢失找不到问题 免费下载分享

在使用电脑系统时经常会出现丢失找不到某些文件的情况,由于很多常用软件都是采用 Microsoft Visual Studio 编写的,所以这类软件的运行需要依赖微软Visual C运行库,比如像 QQ、迅雷、Adobe 软件等等,如果没有安装VC运行库或者安装…

Pspice在OrCAD Capture中的仿真探针使用深入解析

Pspice仿真探针实战指南:如何在OrCAD Capture中精准捕获电路行为你有没有遇到过这样的场景?花了半小时搭好一个Buck电路,信心满满地跑完瞬态仿真,结果打开波形一看——关键节点没监控、电流纹波看不见、效率曲线还得手动算。更糟的…

ddodiag.exe文件丢失找不到问题 免费下载方法

在使用电脑系统时经常会出现丢失找不到某些文件的情况,由于很多常用软件都是采用 Microsoft Visual Studio 编写的,所以这类软件的运行需要依赖微软Visual C运行库,比如像 QQ、迅雷、Adobe 软件等等,如果没有安装VC运行库或者安装…

从零实现AUTOSAR NM报文唤醒的软件配置

AUTOSAR NM报文唤醒:从配置到落地的完整实践指南你有没有遇到过这样的场景?整车钥匙未插入,但某个车门模块却频繁“醒来”,继而耗尽蓄电池;或者遥控解锁时响应迟钝,排查半天才发现是网络管理状态没对齐。这…

UVC协议实现高清视频传输:项目应用详解

UVC协议如何让高清视频“即插即用”?一个嵌入式工程师的实战笔记你有没有遇到过这样的场景:花了几千块买的专业摄像头,插上电脑却还要装一堆驱动;或者在Linux板子上调了三天图像采集程序,结果换到Windows又得重来一遍&…

dll一键修复工具 dll运行库修复工具下载

在使用电脑系统时经常会出现丢失找不到某些文件的情况,由于很多常用软件都是采用 Microsoft Visual Studio 编写的,所以这类软件的运行需要依赖微软Visual C运行库,比如像 QQ、迅雷、Adobe 软件等等,如果没有安装VC运行库或者安装…

Razer在2026年CES展会推出全息AI伴侣项目

去年Razer展示了Project Ava数字助手,它生活在你的电脑中帮助调整设置或提供游戏建议。但现在在2026年CES展会上,该公司的AI伴侣平台获得了重大升级,同时搬入了新的"住所"。现在,Project Ava不再完全局限于你的PC屏幕&a…

独立IP服务器有哪些常见的应用场景?

独立IP服务器凭借其专属IP地址、高安全性和稳定性,在多个关键业务场景中发挥着重要作用。以下是独立IP服务器的主要应用场景:一、大型企业网站与电商平台独立IP服务器是大型企业官网和电商平台的首选方案。对于日均访问量百万级的企业网站,独…

模拟信号基础知识体系梳理:完整学习路径

模拟信号从入门到实战:一条清晰的技术成长路径 你有没有遇到过这样的情况? 传感器输出的电压明明应该稳定在1.65V,可实测却一直在跳动;心电图信号刚放大就自激振荡,像收音机搜台时的“滋滋”声;或者ADC读数…

Vitis安装与Xilinx USB下载器驱动兼容性完整指南

Vitis 安装后无法识别硬件?彻底解决 Xilinx USB 下载器驱动兼容性问题 你有没有遇到过这样的情况:好不容易把 Vitis 装好,项目也建好了,结果一点击“Program Device”—— 设备管理器显示未知设备,Vivado Hardware M…

模拟电路基础知识总结:新手入门必看的十大核心概念

模拟电路入门:从零开始理解真实世界的信号处理你有没有想过,为什么你的耳机能还原出歌手细微的呼吸声?为什么温度传感器可以精确到0.1℃?这些看似平常的功能背后,其实都依赖于一个常被忽视却至关重要的技术领域——模拟…

从零搭建鲲鹏 HPC 环境:从朴素矩阵乘法到高性能实现

一、引言 高性能计算(HPC)是科学研究和工程应用的重要支撑,而矩阵运算是 HPC 领域最基础也最重要的操作之一。本文将通过一个简单但实用的案例,矩阵乘法的并行优化,从零开始在鲲鹏平台上进行 HPC 开发实践。 二、环境准…

救命神器 9款一键生成论文工具测评:继续教育论文写作全攻略

救命神器 9款一键生成论文工具测评:继续教育论文写作全攻略 2026年继续教育论文写作工具测评:高效创作的得力助手 在继续教育领域,论文写作不仅是提升专业能力的重要环节,更是职称评定、成果展示的关键环节。然而,面对…

双卧轴搅拌机与立轴行星式搅拌机哪种设备好?

在混凝土搅拌设备领域,双卧轴搅拌机与立轴行星式搅拌机犹如两颗并行的星辰,各自在特定场景中闪耀着独特光芒。二者并非简单的替代关系,而是通过差异化设计满足不同工程需求的互补型设备。小编将从技术原理、应用场景、维护成本三个维度展开分…

基于DWA的动态环境下多智能体自主避障路径优化附MATLAB代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。🍎 往期回顾关注个人主页:Matlab科研工作室👇 关注我领取海量matlab电子书和数学建模资料 &#x1f34…

数字化SPC项目申报,看这个投资回报评估就够了...

之前的两篇文章中,我给大家分析了Excel和纸面SPC的种种问题,也介绍了数字化SPC的应用场景: 还在用Excel做SPC分析?你得看看这个…… 数字化SPC系统:七大应用场景,从“被动响应”到“主动预防”的转变 看完之后会有人觉得应该上一个数字化SPC系统,解决当前的燃眉之急。…

力扣hot100:每日温度

题目描述:思路分析(单调栈)这道题最优解是使用单调栈(Monotonic Stack)。核心思想:我们从左到右遍历每一天。用一个栈来维护一个从栈底到栈顶温度严格递减的索引序列(即栈中保存的是还没有找到更…