收藏!DeepSeek爆火后,后端转AI大模型工程化工程师全攻略

随着DeepSeek等大模型产品的持续爆火,AI大模型工程化领域彻底迎来了需求爆发期。不少后端工程师敏锐捕捉到这一行业风口,却在“如何转型AI大模型工程化工程师”的门槛前陷入迷茫:不清楚核心技能栈、摸不透学习路径、不了解行业招聘标准……

其实,最直观的转型方向参考,就藏在企业的招聘JD里。下面这则真实的AI大模型应用开发岗位招聘需求,直接点明了行业对人才的核心要求,小白和转行党建议重点关注:

拆解JD核心:大模型应用开发必备技能清单

仔细研读这份招聘需求就能发现,企业对大模型应用开发工程师的技能要求并非杂乱无章,而是围绕“技术基础-框架工具-核心能力-工程落地”形成的完整体系,具体可梳理为以下7大核心要点:

  1. 编程语言基础:熟练掌握Python。作为AI领域的“通用语言”,Python在数据处理、模型开发、工具调用等环节均占据核心地位,是转型的必备入门技能;
  2. 深度学习框架:精通PyTorch或TensorFlow。这两大框架是大模型开发的核心工具,无论是模型训练、微调还是部署,都离不开其支撑,掌握其一即可打通核心技术链路;
  3. 大模型核心架构:熟悉Transformer、BERT等经典框架。这些是当前主流大模型的技术基石,理解其底层逻辑才能更好地进行模型适配与优化;
  4. 模型全流程操作能力:掌握训练、微调、模型压缩、部署全流程。这是从“理论”到“落地”的关键环节,也是企业招聘的核心考察点;
  5. 前沿应用技术:了解RAG(检索增强生成)、Prompt Engineering(提示词工程)、AI Agent、RLHF(基于人类反馈的强化学习)。这些是当前大模型应用落地的热门技术方向,掌握后能大幅提升竞争力;
  6. 开发工具与数据库:熟练使用Dify、LangChain、FastGPT等开发平台,同时熟悉向量数据库、知识库相关操作。这些工具能大幅提升开发效率,是工程化落地的重要助力;
  7. 工程化架构能力:具备分布式系统开发经验,理解高可用、高并发设计思路。大模型应用往往需要应对海量数据和高并发请求,这一能力是区别于纯算法工程师的核心优势,也是后端工程师转型的天然加分项。

转型路径清晰化:从后端到AI大模型工程师的学习逻辑

结合上述技能清单,后端工程师转型其实有天然优势(如分布式架构、工程化落地经验),只需按“循序渐进、重点突破”的思路规划学习路径即可,核心逻辑可总结为:

第一步:夯实基础——优先补全Python编程语言能力(若已有基础可跳过),重点攻克PyTorch/TensorFlow等深度学习框架;

第二步:核心能力突破——学习Transformer、BERT等底层架构知识,掌握模型训练、微调、压缩的核心原理与实操方法;

第三步:工具与应用落地——上手LangChain、Dify等开发平台,熟悉向量数据库、知识库的使用,尝试结合RAG、Prompt Engineering等技术搭建简单应用;

第四步:工程化能力融合——将后端工程师的分布式架构、高可用设计经验迁移到AI应用中,实现从“功能实现”到“稳定落地”的升级。

下面这张学习路径图,能更直观地帮你梳理转型脉络,建议收藏备用:

总结来说,大模型工程化工程师并非“遥不可及”,后端工程师转型更有工程化经验的天然优势。只要围绕招聘JD的核心需求,按清晰的路径补全技能短板,再通过实际项目积累实操经验,就能顺利打通转型链路。如果在学习过程中遇到具体的技术难点(如框架学习、模型微调实操),也可以随时关注后续的针对性教程~

小白/程序员如何系统学习大模型LLM?

作为在一线互联网企业深耕十余年的技术老兵,我经常收到小白和程序员朋友的提问:“零基础怎么入门大模型?”“自学没有方向怎么办?”“实战项目怎么找?”等问题。难以高效入门。

这里为了帮助大家少走弯路,我整理了一套全网最全最细的大模型零基础教程。涵盖入门思维导图、经典书籍手册、实战视频教程、项目源码等核心内容。免费分享给需要的朋友!

👇👇扫码免费领取全部内容👇👇

1、我们为什么要学大模型?

很多开发者会问:大模型值得花时间学吗?答案是肯定的——学大模型不是跟风追热点,而是抓住数字经济时代的核心机遇,其背后是明确的行业需求和实打实的个人优势:

第一,行业刚需驱动,并非突发热潮。大模型是AI规模化落地的核心引擎,互联网产品迭代、传统行业转型、新兴领域创新均离不开它,掌握大模型就是拿到高需求赛道入场券。

第二,人才缺口巨大,职业机会稀缺。2023年我国大模型人才缺口超百万,2025年预计达400万,具备相关能力的开发者岗位多、薪资高,是职场核心竞争力。

第三,技术赋能增效,提升个人价值。大模型可大幅提升开发效率,还能拓展职业边界,让开发者从“写代码”升级为“AI解决方案设计者”,对接更高价值业务。

对于开发者而言,现在入门大模型,不仅能搭上行业发展的快车,还能为自己的职业发展增添核心竞争力——无论是互联网大厂的AI相关岗位,还是传统行业的AI转型需求,都在争抢具备大模型技术能力的人才。

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

2、大模型入门到实战全套学习大礼包分享

最后再跟大家说几句:只要你是真心想系统学习AI大模型技术,这份我耗时许久精心整理的学习资料,愿意无偿分享给每一位志同道合的朋友。

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

部分资料展示

2.1、 AI大模型学习路线图,厘清要学哪些

对于刚接触AI大模型的小白来说,最头疼的问题莫过于“不知道从哪学起”,没有清晰的方向很容易陷入“东学一点、西补一块”的低效困境,甚至中途放弃。

为了解决这个痛点,我把完整的学习路径拆解成了L1到L4四个循序渐进的阶段,从最基础的入门认知,到核心理论夯实,再到实战项目演练,最后到进阶优化与落地,每一步都明确了学习目标、核心知识点和配套实操任务,带你一步步从“零基础”成长为“能落地”的大模型学习者。后续还会陆续拆解每个阶段的具体学习内容,大家可以先收藏起来,跟着路线逐步推进。

L1级别:大模型核心原理与Prompt

L1阶段:将全面介绍大语言模型的基本概念、发展历程、核心原理及行业应用。从A11.0到A12.0的变迁,深入解析大模型与通用人工智能的关系。同时,详解OpenAl模型、国产大模型等,并探讨大模型的未来趋势与挑战。此外,还涵盖Pvthon基础、提示工程等内容。
目标与收益:掌握大语言模型的核心知识,了解行业应用与趋势;熟练Python编程,提升提示工程技能,为AI应用开发打下坚实基础。

L2级别:RAG应用开发工程

L2阶段:将深入讲解AI大模型RAG应用开发工程,涵盖Naive RAGPipeline构建、AdvancedRAG前治技术解读、商业化分析与优化方案,以及项目评估与热门项目精讲。通过实战项目,提升RAG应用开发能力。

目标与收益:掌握RAG应用开发全流程,理解前沿技术,提升商业化分析与优化能力,通过实战项目加深理解与应用。

L3级别:Agent应用架构进阶实践

L3阶段:将 深入探索大模型Agent技术的进阶实践,从Langchain框架的核心组件到Agents的关键技术分析,再到funcation calling与Agent认知框架的深入探讨。同时,通过多个实战项目,如企业知识库、命理Agent机器人、多智能体协同代码生成应用等,以及可视化开发框架与IDE的介绍,全面展示大模型Agent技术的应用与构建。

目标与收益:掌握大模型Agent技术的核心原理与实践应用,能够独立完成Agent系统的设计与开发,提升多智能体协同与复杂任务处理的能力,为AI产品的创新与优化提供有力支持。

L4级别:模型微调与私有化大模型

L4级别:将聚焦大模型微调技术与私有化部署,涵盖开源模型评估、微调方法、PEFT主流技术、LORA及其扩展、模型量化技术、大模型应用引警以及多模态模型。通过chatGlM与Lama3的实战案例,深化理论与实践结合。

目标与收益:掌握大模型微调与私有化部署技能,提升模型优化与部署能力,为大模型项目落地打下坚实基础。

2.2、 全套AI大模型应用开发视频教程

从入门到进阶这里都有,跟着老师学习事半功倍。

2.3、 大模型学习书籍&文档

收录《从零做大模型》《动手做AI Agent》等经典著作,搭配阿里云、腾讯云官方技术白皮书,帮你夯实理论基础。

2.4、AI大模型最新行业报告

2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

2.5、大模型大厂面试真题

整理了百度、阿里、字节等企业近三年的AI大模型岗位面试题,涵盖基础理论、技术实操、项目经验等维度,每道题都配有详细解析和答题思路,帮你针对性提升面试竞争力。

【大厂 AI 岗位面经分享(107 道)】

【AI 大模型面试真题(102 道)】

【LLMs 面试真题(97 道)】

2.6、大模型项目实战&配套源码

学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。

适用人群

四阶段学习规划(共90天,可落地执行)
第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范
第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署
第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建
第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型

  • 带你了解全球大模型

  • 使用国产大模型服务

  • 搭建 OpenAI 代理

  • 热身:基于阿里云 PAI 部署 Stable Diffusion

  • 在本地计算机运行大模型

  • 大模型的私有化部署

  • 基于 vLLM 部署大模型

  • 案例:如何优雅地在阿里云私有部署开源大模型

  • 部署一套开源 LLM 项目

  • 内容安全

  • 互联网信息服务算法备案

  • 👇👇扫码免费领取全部内容👇👇

3、这些资料真的有用吗?

这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1135144.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Llama Factory微调实战:从模型选择到效果评估

Llama Factory微调实战:从模型选择到效果评估 作为一名AI研究人员,你是否曾为大语言模型微调的复杂流程感到困惑?本文将带你全面了解如何使用Llama Factory完成从模型选择到效果评估的完整微调流程。这类任务通常需要GPU环境,目前…

基于python的书籍售卖系统(源码+文档)

项目简介书籍售卖系统实现了以下功能:前台:用户注册,书籍展示,在线购物,购物车,在线下单,结账管理,销售排行榜 后台管理员:用户管理 ,书籍管理,定…

数据集处理技巧:为Sambert-Hifigan定制情感标注语音训练流程

数据集处理技巧:为Sambert-Hifigan定制情感标注语音训练流程 🎯 业务场景与核心痛点 在当前智能语音交互系统中,情感化语音合成(Emotional Text-to-Speech, E-TTS) 已成为提升用户体验的关键能力。传统TTS系统输出的语…

VIT视觉模型+语音合成?多模态项目中Sambert提供高质量音频输出

VIT视觉模型语音合成?多模态项目中Sambert提供高质量音频输出 📌 技术背景:多模态融合趋势下的语音合成新角色 随着人工智能技术的演进,多模态系统正成为下一代智能应用的核心架构。从图文生成到音视频联动,跨模态信息…

Llama Factory终极指南:从零到微调专家只需1小时

Llama Factory终极指南:从零到微调专家只需1小时 为什么你需要Llama Factory? 作为一名刚接触AI的研究生,当导师要求你微调一个中文对话模型时,是否被环境配置、显存不足等问题困扰?Llama Factory正是为解决这些痛点而…

十分钟玩转Llama Factory:零基础快速搭建你的第一个对话模型

十分钟玩转Llama Factory:零基础快速搭建你的第一个对话模型 作为一名刚接触AI的大学生,想要微调一个对话模型来完成课程项目,却卡在复杂的CUDA配置和依赖安装环节?别担心,Llama Factory正是为你量身打造的解决方案。这…

RAG系统如何集成语音输出?Sambert-Hifigan API无缝对接langchain

RAG系统如何集成语音输出?Sambert-Hifigan API无缝对接LangChain 🎙️ 为什么RAG需要语音输出能力? 在当前大模型与智能对话系统快速演进的背景下,检索增强生成(Retrieval-Augmented Generation, RAG) 已成…

前端如何调用TTS API?提供curl示例与JavaScript代码片段

前端如何调用TTS API?提供curl示例与JavaScript代码片段 🎙️ Sambert-HifiGan 中文多情感语音合成服务 (WebUI API) 项目背景与技术价值 在智能语音交互日益普及的今天,文本转语音(Text-to-Speech, TTS) 技术已成为客…

揭秘LLaMA Factory:如何用云端GPU快速微调你的专属AI助手

揭秘LLaMA Factory:如何用云端GPU快速微调你的专属AI助手 作为一名产品经理,你是否遇到过这样的困境:想要快速验证一个AI客服的可行性,却苦于公司IT资源紧张,无法搭建本地微调环境?LLaMA Factory正是为解决…

5分钟极速上手:用LLaMA-Factory和云端GPU打造你的第一个AI聊天机器人

5分钟极速上手:用LLaMA-Factory和云端GPU打造你的第一个AI聊天机器人 作为一名前端开发者,你可能对AI聊天机器人充满好奇,但面对复杂的模型微调和环境配置却无从下手。别担心,今天我将带你用LLaMA-Factory和云端GPU资源&#xff0…

如何更有效地说服开发接收你的bug

来来来,测试小伙伴们,看看以下这张图是不是觉得很熟悉.. 虽然这张图带点戏谑的成分,但确实折射出大部分IT公司测试人员在报bug时,与开发的沟通存在些许问题。如何更有效地说服开发接收你的bug,以下整理下资深老鸟们给测…

Llama Factory微调显存不足?云端GPU一键解决

Llama Factory微调显存不足?云端GPU一键解决 作为一名AI开发者,我在本地尝试微调Llama模型时,最常遇到的拦路虎就是显存不足(OOM)问题。每次训练到一半就崩溃,调试参数、降低batch size都无济于事。后来发现…

Llama Factory微调显存不足?云端GPU一键解决

Llama Factory微调显存不足?云端GPU一键解决 作为一名AI开发者,我在本地尝试微调Llama模型时,最常遇到的拦路虎就是显存不足(OOM)问题。每次训练到一半就崩溃,调试参数、降低batch size都无济于事。后来发现…

灰度测试是什么?

灰度测试是什么? 灰度测试是软件测试过程中的一种测试方法,结合了黑盒测试和白盒测试的特点。在灰度测试中,测试人员对系统的内部结构、设计和实现有一定的了解,但不完全了解所有的细节。 灰度测试是基于软件要求和设计文档进行…

京东关键词API接口获取

你想要获取京东关键词相关的 API 接口,以此替代传统爬虫,更合规、稳定地获取商品列表等信息,我会先讲解官方合规的 API 获取与使用方式(推荐),再说明非官方接口的情况(仅供学习)&…

Sambert-HifiGan语音合成在AR/VR中的应用

Sambert-HifiGan 中文多情感语音合成在 AR/VR 中的应用 引言:语音合成如何赋能下一代沉浸式体验? 随着增强现实(AR)与虚拟现实(VR)技术的快速发展,用户对自然、拟人化的人机交互方式提出了更高要…

如何实现测试自动化?

随着软件开发的日益发展,测试自动化技术也越来越成熟。通过测试自动化技术,可以大幅度提升测试效率,减少测试成本,同时还能提高测试质量和覆盖面。那么如何实现测试自动化呢?下面将为大家介绍一些基本的步骤以及需要注…

Llama Factory可视化:无需代码快速定制你的对话AI

Llama Factory可视化:无需代码快速定制你的对话AI 作为一名非技术背景的创业者,你可能经常遇到这样的困扰:想验证一个AI对话产品的想法,却被复杂的代码和命令行操作劝退。今天我要分享的Llama Factory可视化工具,正是为…

提升Sambert-HifiGan合成质量的7个实用技巧

提升Sambert-HifiGan合成质量的7个实用技巧 🎯 引言:中文多情感语音合成的挑战与机遇 随着AI语音技术的发展,高质量、富有情感表现力的中文语音合成已成为智能客服、有声阅读、虚拟主播等场景的核心需求。基于ModelScope平台的 Sambert-HifiG…

从 0 到 1:用 RPA 技术实现企业微信外部群 自动化管理

一、 什么是外部群 SOP 自动化? 在私域运营中,SOP(Standard Operating Procedure)是提升转化率的核心。对于官方接口尚未完全开放的外部群场景,通过 RPA(机器人流程自动化)技术,我们…