基于python的养老院老年人膳食护工评价中心管理系统的设计与实现_i9o9c8r5

目录

      • 摘要
      • 关键词
    • 关于博主
    • 开发技术路线
    • 相关技术介绍
    • 核心代码参考示例
    • 结论
    • 源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

摘要

该系统基于Python开发,旨在优化养老院老年人膳食管理和护工评价流程,提升服务质量和效率。系统采用B/S架构,结合Django框架实现后端逻辑,前端使用HTML、CSS和JavaScript构建交互界面,数据库采用MySQL存储数据。

系统核心功能包括膳食管理模块、护工评价模块、数据统计模块和权限管理模块。膳食管理模块支持菜单制定、营养分析及特殊饮食需求记录,确保老年人饮食健康。护工评价模块允许老年人及家属对护工服务进行评分和反馈,形成综合评价报告。数据统计模块通过图表展示膳食和护工服务的动态趋势,辅助管理层决策。权限管理模块区分管理员、护工和家属角色,确保数据安全和操作合规。

技术实现上,系统采用MVC设计模式,通过Ajax实现异步数据交互,利用Pandas和Matplotlib进行数据分析与可视化。测试表明,系统运行稳定,响应速度快,用户体验良好,能够有效提升养老院的管理效率和服务透明度。

关键词

Python;养老院管理系统;膳食管理;护工评价;Django





关于博主

本人是专业技术服务,大家都要生活,这个很正常。我和其他人不同的是,我是源头供货商。大家都不容易,我理解同学们的经济压力。我的原则很简单:用最专业的技术、最实惠的价格、最真诚的态度服务大家。无论最终合作与否,咱们都是朋友,能帮的地方我绝不含糊。买卖不成仁义在,这就是我的做人原则。 团队专注于uniapp框架,Android,Kotlin框架,koa框架,express框架,go语言,laravel框架,thinkphp框架,springcloud,django,flask框架,SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发 全网粉丝30W+,累计指导10w+项目,原创技术文章2万+篇,GitHub项目获赞50W+ 核心服务: 专业指导、项目源码开发、技术答疑解惑,用学生视角理解学生需求,提供最贴心的技术帮助。

开发技术路线

开发语言:Python
框架:flask/django
开发软件:PyCharm/vscode
数据库:mysql
数据库工具:Navicat for mysql
前端开发框架:vue.js
数据库 mysql 版本不限
本系统后端语言框架支持: 1 java(SSM/springboot)-idea/eclipse 2.Nodejs+Vue.js -vscode 3.python(flask/django)--pycharm/vscode 4.php(thinkphp/laravel)-hbuilderx

相关技术介绍

Hadoop:Hadoop 是一个分布式计算平台,用于处理大规模数据。在酒店评论情感分析中,它负责存储和处理海量评论数据,支持并行计算,提升数据处理效率,为深度学习模型训练提供强大的数据支持。
决策树算法:决策树是一种经典的机器学习算法,用于情感分类。在酒店评论情感分析中,它通过构建树状模型,根据特征划分情感类别,简单易懂且可解释性强,适用于初步情感分类任务。
协同过滤:协同过滤是一种推荐系统技术,通过分析用户的历史行为和偏好,挖掘用户之间的相似性,为用户推荐可能感兴趣的酒店。在酒店评论情感分析系统中,协同过滤可用于结合情感分析结果,为用户精准推荐高满意度的酒店,提升用户体验和决策效率。

B/S架构(Browser/Server):B/S架构是一种网络体系结构,用户通过浏览器访问服务器上的应用程序。在本系统中,用户通过浏览器访问服务器上的Java Web应用程序。
LSTM算法:LSTM(长短期记忆网络)是一种深度学习算法,特别适合处理序列数据。在酒店评论情感分析中,LSTM能够捕捉文本中的长期依赖关系,精准识别情感倾向,有效提升情感分析的准确性和鲁棒性。
Django框架:Django是一个开放源代码的Web应用框架,采用MTV(Model-Template-View)设计模式。它鼓励快速开发和干净、实用的设计。在本系统中,我们选择Django框架来实现后端逻辑,主要因为它提供了许多自动化功能,如ORM(对象关系映射)、模板引擎、表单处理等。这些功能大大减轻了开发者的工作量,提高了开发效率。Django具有良好的扩展性和安全性,支持多种数据库后端,并且有完善的文档和社区支持。
Python语言:Python是一种广泛使用的高级编程语言,以其简洁易读的语法和强大的功能而闻名。Python拥有丰富的标准库和第三方库,可以满足各种开发需求。在本系统中,我们选择Python作为后端开发语言,主要考虑到其高效性和易用性。Python的动态类型检查和自动内存管理使得开发过程更加顺畅,减少了代码量和出错概率。Python社区活跃,有大量的开源项目和教程可以参考,有助于解决开发中遇到的问题。
MySQL:MySQL是一个广泛使用的开源关系型数据库管理系统,用于存储和管理数据。在本系统中,MySQL被用作数据库,负责存储系统的数据。
Scrapy:Scrapy 是一款高效的网络爬虫框架,用于爬取酒店评论数据。它能够快速定位目标网站,提取评论文本并保存为结构化数据,为情感分析提供丰富的原始素材,确保数据采集的高效性和准确性。
数据清洗:数据清洗是情感分析的重要环节,用于去除酒店评论中的噪声数据,如无关符号、重复内容等。通过清洗,确保输入模型的数据质量,从而提高情感分析的准确性和可靠性。
Vue.js:属于轻量级的前端JavaScript框架,它采用数据驱动的方式构建用户界面。Vue.js的核心库专注于视图层,易于学习和集成,提供了丰富的组件库和工具链,支持单文件组件和热模块替换,极大地提升了开发效率和用户体验。

核心代码参考示例

预测算法代码如下(示例):

defbooksinfoforecast_forecast():importdatetimeifrequest.methodin["POST","GET"]:#get、post请求msg={'code':normal_code,'message':'success'}#获取数据集req_dict=session.get("req_dict")connection=pymysql.connect(**mysql_config)query="SELECT author,type,status,wordcount, monthcount FROM booksinfo"#处理缺失值data=pd.read_sql(query,connection).dropna()id=req_dict.pop('id',None)req_dict.pop('addtime',None)df=to_forecast(data,req_dict,None)#创建数据库连接,将DataFrame 插入数据库connection_string=f"mysql+pymysql://{mysql_config['user']}:{mysql_config['password']}@{mysql_config['host']}:{mysql_config['port']}/{mysql_config['database']}"engine=create_engine(connection_string)try:ifreq_dict:#遍历 DataFrame,并逐行更新数据库withengine.connect()asconnection:forindex,rowindf.iterrows():sql=""" INSERT INTO booksinfoforecast (id ,monthcount ) VALUES (%(id)s ,%(monthcount)s ) ON DUPLICATE KEY UPDATE monthcount = VALUES(monthcount) """connection.execute(sql,{'id':id,'monthcount':row['monthcount']})else:df.to_sql('booksinfoforecast',con=engine,if_exists='append',index=False)print("数据更新成功!")exceptExceptionase:print(f"发生错误:{e}")finally:engine.dispose()# 关闭数据库连接returnjsonify(msg)

结论

本系统还支持springboot/laravel/express/nodejs/thinkphp/flask/django/ssm/springcloud 微服务分布式等框架,同行可拿货,招校园代理
大数据指的就是尽可能的把信息收集统计起来进行分析,来分析你的行为和你周边的人的行为。大数据的核心价值在于存储和分析海量数据,大数据技术的战略意义不在于掌握大量数据信息,而在于专业处理这些有意义的数据。看似大数据是一个很高大上的感觉,和我们普通人的生活相差甚远,但是其实不然!大数据目前已经存在我们生活中的各种角落里了, 数据获取方法
数据集来源外卖推荐的相关数据,通过python中的xpath获取html中的数据。
数据预处理设计 对于爬取数据量不大的内容可以使用CSV库来存储数据,将其存为CSV文件格式,再对数据进行数据预处理,也可通过代码进行数据预处理。
(1)数据获取板块
数据获取板块功能主要是依据分析目的及要达到的目标,确定获取的数据种类,并使用直接获取数据文件方式或爬虫方式获取原始数据。
(2)数据预处理板块
数据预处理板块功能是对获取到的数据进行预处理操作:将重复的字段筛选,将过短并且没有实际意义的数据进行过滤,选择重要字段,标准化处理,异常值处理等预处理操作。
(3)数据存储板块
数据存储板块主要功能是把经过预处理的数据持久化存储,以便于后续分析。
(4)数据分析板块
数据分析板块主要功能是根据分析目标,找出数据中字段之间的内在关系,与规律。
(5)数据可视化板块
数据可视化板块主要功能是使用适当的图标展现方式,把数据的内在关系、规律展现出来。

源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

需要成品或者定制,文章最下方名片联系我即可~ 所有项目都经过测试完善,本系统包修改时间和标题,包安装部署运行调试,不满意的可以定制

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1134991.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

零基础教程:5分钟学会用快马打开和编辑.MD文件

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 创建一个极简的.MD文件查看器,功能包括:1. 拖放上传.MD文件 2. 实时预览渲染效果 3. 基础编辑功能 4. 保存修改 5. 使用纯HTML/CSS/JavaScript实现单页应用…

不用安装!在线体验GIT核心功能的5种方法

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 设计一个GIT在线体验方案,包含:1. 主流在线GIT平台对比(GitHub Codespaces等) 2. 浏览器内模拟GIT环境的工具 3. 容器化快速启动方案 4. 基础命令练习沙箱。…

告别环境配置:用预装Llama Factory的镜像快速启动AI项目

告别环境配置:用预装Llama Factory的镜像快速启动AI项目 作为一名技术经理,你是否遇到过这样的困境:想要评估大模型在公司业务中的应用潜力,但团队缺乏AI基础设施,从头搭建环境又耗时耗力?本文将介绍如何利…

CRNN模型热更新:不停机升级OCR服务

CRNN模型热更新:不停机升级OCR服务 📖 项目背景与技术挑战 在现代智能文档处理、自动化办公和工业质检等场景中,OCR(光学字符识别) 技术已成为不可或缺的一环。传统OCR系统往往依赖静态部署,一旦上线后若需…

SpringBoot 中的 7 种耗时统计方式,你用过几种?

前言 在日常开发中,经常会遇到一些性能问题。 比如用户反馈:“这个页面加载好慢啊!” 这个时候,你该怎么办? 首先就得找出到底是哪个方法、哪段代码执行时间过长。 只有找到了瓶颈,才能对症下药进行优化…

模型诊所:使用Llama Factory诊断和修复问题模型

模型诊所:使用Llama Factory诊断和修复问题模型 作为一名AI工程师,你是否遇到过这样的困境:精心准备的数据集、调了无数次的参数,但模型微调效果依然不尽如人意?这时候,一个专业的诊断工具就显得尤为重要。…

基于python的婚纱影楼服务平台设计和实现_0uwse39z

目录婚纱影楼服务平台设计与实现核心功能模块技术实现特点安全与扩展性关于博主开发技术路线相关技术介绍核心代码参考示例结论源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!婚纱影楼服务平台设计与实现 该平台基于Python技术栈开发&am…

语音合成环境总冲突?这个镜像已修复numpy/scipy版本问题

语音合成环境总冲突?这个镜像已修复numpy/scipy版本问题 📖 项目简介 在语音合成(Text-to-Speech, TTS)的实际部署中,开发者常常面临一个令人头疼的问题:依赖包版本冲突。尤其是在使用基于 Hugging Face da…

CRNN OCR与智能客服结合:图片咨询自动回复

CRNN OCR与智能客服结合:图片咨询自动回复 📖 项目简介 在现代智能客服系统中,用户通过上传截图、发票、手写便条等方式进行图文咨询的场景日益普遍。传统的文本输入识别已无法满足多模态交互需求,OCR(光学字符识别&am…

用Apache Atlas快速构建数据目录原型的方法

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 开发一个快速原型生成器:1. 根据用户输入的业务领域自动生成Atlas类型定义 2. 创建示例数据实体 3. 生成基础UI展示数据目录 4. 导出可部署的包。使用DeepSeek模型理解…

国家电网Java面试被问:最小生成树的Kruskal和Prim算法

一、基础概念 1.1 最小生成树定义 最小生成树(Minimum Spanning Tree, MST):在带权连通无向图中,找到一个边的子集,使得: 包含所有顶点 没有环 边的总权重最小 1.2 应用场景 网络设计:以最…

CRNN OCR与LangChain集成:快速构建文档智能处理流水线

CRNN OCR与LangChain集成:快速构建文档智能处理流水线 📖 项目简介 在数字化转型加速的今天,文档智能处理已成为企业自动化流程中的关键环节。从发票识别、合同解析到证件信息提取,OCR(光学字符识别)技术…

Llama Factory性能优化:让你的微调速度提升300%的秘籍

Llama Factory性能优化:让你的微调速度提升300%的秘籍 作为一名长期与大型语言模型打交道的工程师,我深刻理解模型微调过程中的痛点——尤其是当看到训练进度条像蜗牛一样缓慢移动时。最近通过系统实践Llama Factory的各项优化技巧,成功将单次…

24小时开发实战:快速构建图片解密APP原型

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 使用快马平台快速开发一个图片解密APP原型,要求:1. 响应式网页界面;2. 图片上传和预览功能;3. 集成开源的steg库进行解密&#xff1…

企业级系统SSL证书路径问题实战解决方案

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 创建一个企业SSL证书管理模拟器,模拟以下场景:1) 多层级CA证书链 2) 混合环境(Java/.NET) 3) 证书自动更新机制。要求:使用DeepSeek模型生成诊断…

基于python的家庭成员亲子相册图片照片管理系统的设计与实现_192n2568

目录系统设计目标技术架构核心功能模块创新点应用价值关于博主开发技术路线相关技术介绍核心代码参考示例结论源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!系统设计目标 该系统旨在通过Python技术构建一个高效、易用的家庭成员亲子相册…

Kimi类应用核心技术复现:多情感语音合成完整流程

Kimi类应用核心技术复现:多情感语音合成完整流程 📌 技术背景与核心价值 随着AI语音助手、虚拟主播、有声阅读等应用场景的爆发式增长,传统“机械朗读”式的语音合成已无法满足用户对自然度和表现力的需求。多情感语音合成(Emot…

AI配音成本大缩水:Sambert-Hifigan镜像部署,替代商业TTS方案

AI配音成本大缩水:Sambert-Hifigan镜像部署,替代商业TTS方案 一、中文多情感语音合成的技术演进与成本挑战 在智能客服、有声书生成、短视频配音等应用场景中,高质量的中文多情感语音合成(Text-to-Speech, TTS) 正变…

中文多情感语音合成新选择:Sambert-HifiGan全面解析

中文多情感语音合成新选择:Sambert-HifiGan全面解析 一、引言:中文多情感语音合成的技术演进与现实需求 随着智能语音助手、有声读物、虚拟主播等应用的普及,传统“机械式”语音合成已无法满足用户对自然度和表现力的需求。尤其在中文场景下…

如何用AI自动解决Python请求重试错误

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 创建一个Python脚本,使用requests库实现智能重试机制,当遇到网络请求失败时自动重试。要求:1) 支持自定义重试次数和间隔时间 2) 能识别不同类型…