基于YOLOv10的船舶类型识别检测系统(YOLOv10深度学习+YOLO数据集+UI界面+模型)

一、项目介绍

项目背景:
船舶识别与检测在海洋交通管理、港口监控、渔业管理、海上救援等领域具有重要意义。传统的船舶识别方法依赖于雷达或人工观察,效率较低且容易受到环境干扰。基于深度学习的目标检测技术能够自动识别船舶类型,并在复杂海况下提供准确的检测结果。

项目目标:
本项目旨在利用 YOLOv10 目标检测算法,构建一个高效、准确的船舶识别检测系统。系统能够实时检测图像或视频中的船舶,并识别其类型(如货船、油轮、游艇等)。通过训练和优化模型,系统能够在复杂海况下准确识别船舶,满足海洋交通管理和监控的需求。

技术栈:

  • 深度学习框架: PyTorch

  • 目标检测算法: YOLOv10

  • 数据处理: OpenCV, NumPy

  • 模型训练与评估: PyTorch Lightning, TensorBoard

  • 部署: ONNX, TensorRT (可选)

项目流程:

  1. 数据准备: 收集并标注船舶图像数据,划分为训练集、验证集和测试集。

  2. 模型训练: 使用 YOLOv10 模型在训练集上进行训练,调整超参数以优化模型性能。

  3. 模型评估: 在验证集和测试集上评估模型性能,计算精度、召回率、mAP等指标。

  4. 模型优化: 通过数据增强、模型剪枝、量化等技术进一步优化模型。

  5. 部署与应用: 将训练好的模型部署到实际应用场景中,如港口监控系统、无人机巡检或卫星图像分析。


基于深度学习YOLOv10的船舶类型识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)_哔哩哔哩_bilibili

基于深度学习YOLOv10的船舶类型识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

二、项目功能展示

系统功能

图片检测:可对图片进行检测,返回检测框及类别信息。

视频检测:支持视频文件输入,检测视频中每一帧的情况。

摄像头实时检测:连接USB 摄像头,实现实时监测。

参数实时调节(置信度和IoU阈值)

  • 图片检测

该功能允许用户通过单张图片进行目标检测。输入一张图片后,YOLO模型会实时分析图像,识别出其中的目标,并在图像中框出检测到的目标,输出带有目标框的图像。

视频检测

视频检测功能允许用户将视频文件作为输入。YOLO模型将逐帧分析视频,并在每一帧中标记出检测到的目标。最终结果可以是带有目标框的视频文件或实时展示,适用于视频监控和分析等场景。

  • 摄像头实时检测

该功能支持通过连接摄像头进行实时目标检测。YOLO模型能够在摄像头拍摄的实时视频流中进行目标检测,实时识别并显示检测结果。此功能非常适用于安防监控、无人驾驶、智能交通等应用,提供即时反馈。

核心特点:

  • 高精度:基于YOLO模型,提供精确的目标检测能力,适用于不同类型的图像和视频。
  • 实时性:特别优化的算法使得实时目标检测成为可能,无论是在视频还是摄像头实时检测中,响应速度都非常快。
  • 批量处理:支持高效的批量图像和视频处理,适合大规模数据分析。

三、数据集介绍

数据集内容:

  • 类别数量 (nc): 10 类

  • 类别名称: ['BULK CARRIER', 'CONTAINER SHIP', 'GENERAL CARGO', 'OIL PRODUCTS TANKER', 'PASSENGERS SHIP', 'TANKER', 'TRAWLER', 'TUG', 'VEHICLES CARRIER', 'YACHT']

  • 数据总量: 4998 张图像

    • 训练集: 3498 张图像

    • 验证集: 1000 张图像

    • 测试集: 500 张图像

数据集来源:
数据集通过多种途径收集,包括公开数据集(如 SeaShips)、卫星图像、无人机拍摄以及实际港口监控图像。为确保数据的多样性和泛化能力,数据集中包含了不同船舶类型、尺寸、颜色以及多种海况和光照条件下的图像。

数据标注:

  • 每张图像中的船舶均使用边界框 (Bounding Box) 进行标注,标注格式为 YOLO 格式 (class_id, x_center, y_center, width, height)。

  • 标注工具: LabelImg 或 CVAT。

  • 标注文件: 每个图像对应一个.txt文件,存储标注信息。

数据集特点:

  1. 多样性: 数据集中包含 10 种不同类型的船舶,涵盖了货船、油轮、游艇等多种船舶类型。

  2. 挑战性: 部分图像包含复杂海况、光照变化、遮挡等干扰因素,以提高模型的鲁棒性。

  3. 平衡性: 训练集、验证集和测试集的比例合理,确保模型在训练、验证和测试过程中能够充分学习并泛化。

数据集配置文件data.yaml

train: .\datasets\images\train val: .\datasets\images\val test: .\datasets\images\test # Classes nc: 10 names: ['BULK CARRIER', 'CONTAINER SHIP', 'GENERAL CARGO', 'OIL PRODUCTS TANKER', 'PASSENGERS SHIP', 'TANKER', 'TRAWLER', 'TUG', 'VEHICLES CARRIER', 'YACHT']

数据集制作流程

  • 标注数据:使用标注工具(如LabelImg、CVAT等)对图像中的目标进行标注。每个目标需要标出边界框,并且标注类别。

  • 转换格式:将标注的数据转换为YOLO格式。YOLO标注格式为每行:<object-class> <x_center> <y_center> <width> <height>,这些坐标是相对于图像尺寸的比例。

  • 分割数据集:将数据集分为训练集、验证集和测试集,通常的比例是80%训练集、10%验证集和10%测试集。

  • 准备标签文件:为每张图片生成一个对应的标签文件,确保标签文件与图片的命名一致。

  • 调整图像尺寸:根据YOLO网络要求,统一调整所有图像的尺寸(如416x416或608x608)。

四、项目环境配置

创建虚拟环境

首先新建一个Anaconda环境,每个项目用不同的环境,这样项目中所用的依赖包互不干扰。

终端输入

conda create -n yolov10 python==3.9

激活虚拟环境

conda activate yolov10

安装cpu版本pytorch

pip install torch torchvision torchaudio

pycharm中配置anaconda

安装所需要库

pip install -r requirements.txt

五、模型训练

训练代码

from ultralytics import YOLOv10 model_path = 'yolov10s.pt' data_path = 'datasets/data.yaml' if __name__ == '__main__': model = YOLOv10(model_path) results = model.train(data=data_path, epochs=500, batch=64, device='0', workers=0, project='runs/detect', name='exp', )
根据实际情况更换模型 yolov10n.yaml (nano):轻量化模型,适合嵌入式设备,速度快但精度略低。 yolov10s.yaml (small):小模型,适合实时任务。 yolov10m.yaml (medium):中等大小模型,兼顾速度和精度。 yolov10b.yaml (base):基本版模型,适合大部分应用场景。 yolov10l.yaml (large):大型模型,适合对精度要求高的任务。
  • --batch 64:每批次64张图像。
  • --epochs 500:训练500轮。
  • --datasets/data.yaml:数据集配置文件。
  • --weights yolov10s.pt:初始化模型权重,yolov10s.pt是预训练的轻量级YOLO模型。

训练结果

六、核心代码

import sys import cv2 import numpy as np from PyQt5.QtWidgets import QApplication, QMessageBox, QFileDialog from PyQt5.QtCore import QThread, pyqtSignal from ultralytics import YOLOv10 from UiMain import UiMainWindow import time import os class DetectionThread(QThread): frame_received = pyqtSignal(np.ndarray, np.ndarray, list) # 原始帧, 检测帧, 检测结果 finished_signal = pyqtSignal() # 线程完成信号 def __init__(self, model, source, conf, iou, parent=None): super().__init__(parent) self.model = model self.source = source self.conf = conf self.iou = iou self.running = True def run(self): try: if isinstance(self.source, int) or self.source.endswith(('.mp4', '.avi', '.mov')): # 视频或摄像头 cap = cv2.VideoCapture(self.source) while self.running and cap.isOpened(): ret, frame = cap.read() if not ret: break # 保存原始帧 original_frame = frame.copy() # 检测 results = self.model(frame, conf=self.conf, iou=self.iou) annotated_frame = results[0].plot() # 提取检测结果 detections = [] for result in results: for box in result.boxes: class_id = int(box.cls) class_name = self.model.names[class_id] confidence = float(box.conf) x, y, w, h = box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) # 发送信号 self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) # 控制帧率 time.sleep(0.03) # 约30fps cap.release() else: # 图片 frame = cv2.imread(self.source) if frame is not None: original_frame = frame.copy() results = self.model(frame, conf=self.conf, iou=self.iou) annotated_frame = results[0].plot() # 提取检测结果 detections = [] for result in results: for box in result.boxes: class_id = int(box.cls) class_name = self.model.names[class_id] confidence = float(box.conf) x, y, w, h = box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) except Exception as e: print(f"Detection error: {e}") finally: self.finished_signal.emit() def stop(self): self.running = False class MainWindow(UiMainWindow): def __init__(self): super().__init__() # 初始化模型 self.model = None self.detection_thread = None self.current_image = None self.current_result = None self.video_writer = None self.is_camera_running = False self.is_video_running = False self.last_detection_result = None # 新增:保存最后一次检测结果 # 连接按钮信号 self.image_btn.clicked.connect(self.detect_image) self.video_btn.clicked.connect(self.detect_video) self.camera_btn.clicked.connect(self.detect_camera) self.stop_btn.clicked.connect(self.stop_detection) self.save_btn.clicked.connect(self.save_result) # 初始化模型 self.load_model() def load_model(self): try: model_name = self.model_combo.currentText() self.model = YOLOv10(f"{model_name}.pt") # 自动下载或加载本地模型 self.update_status(f"模型 {model_name} 加载成功") except Exception as e: QMessageBox.critical(self, "错误", f"模型加载失败: {str(e)}") self.update_status("模型加载失败") def detect_image(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, "警告", "请先停止当前检测任务") return file_path, _ = QFileDialog.getOpenFileName( self, "选择图片", "", "图片文件 (*.jpg *.jpeg *.png *.bmp)") if file_path: self.clear_results() self.current_image = cv2.imread(file_path) self.current_image = cv2.cvtColor(self.current_image, cv2.COLOR_BGR2RGB) self.display_image(self.original_image_label, self.current_image) # 创建检测线程 conf = self.confidence_spinbox.value() iou = self.iou_spinbox.value() self.detection_thread = DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f"正在检测图片: {os.path.basename(file_path)}") def detect_video(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, "警告", "请先停止当前检测任务") return file_path, _ = QFileDialog.getOpenFileName( self, "选择视频", "", "视频文件 (*.mp4 *.avi *.mov)") if file_path: self.clear_results() self.is_video_running = True # 初始化视频写入器 cap = cv2.VideoCapture(file_path) frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = cap.get(cv2.CAP_PROP_FPS) cap.release() # 创建保存路径 save_dir = "results" os.makedirs(save_dir, exist_ok=True) timestamp = time.strftime("%Y%m%d_%H%M%S") save_path = os.path.join(save_dir, f"result_{timestamp}.mp4") fourcc = cv2.VideoWriter_fourcc(*'mp4v') self.video_writer = cv2.VideoWriter(save_path, fourcc, fps, (frame_width, frame_height)) # 创建检测线程 conf = self.confidence_spinbox.value() iou = self.iou_spinbox.value() self.detection_thread = DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f"正在检测视频: {os.path.basename(file_path)}") def detect_camera(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, "警告", "请先停止当前检测任务") return self.clear_results() self.is_camera_running = True # 创建检测线程 (默认使用摄像头0) conf = self.confidence_spinbox.value() iou = self.iou_spinbox.value() self.detection_thread = DetectionThread(self.model, 0, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status("正在从摄像头检测...") def stop_detection(self): if self.detection_thread and self.detection_thread.isRunning(): self.detection_thread.stop() self.detection_thread.quit() self.detection_thread.wait() if self.video_writer: self.video_writer.release() self.video_writer = None self.is_camera_running = False self.is_video_running = False self.update_status("检测已停止") def on_frame_received(self, original_frame, result_frame, detections): # 更新原始图像和结果图像 self.display_image(self.original_image_label, original_frame) self.display_image(self.result_image_label, result_frame) # 保存当前结果帧用于后续保存 self.last_detection_result = result_frame # 新增:保存检测结果 # 更新表格 self.clear_results() for class_name, confidence, x, y in detections: self.add_detection_result(class_name, confidence, x, y) # 保存视频帧 if self.video_writer: self.video_writer.write(cv2.cvtColor(result_frame, cv2.COLOR_RGB2BGR)) def on_detection_finished(self): if self.video_writer: self.video_writer.release() self.video_writer = None self.update_status("视频检测完成,结果已保存") elif self.is_camera_running: self.update_status("摄像头检测已停止") else: self.update_status("图片检测完成") def save_result(self): if not hasattr(self, 'last_detection_result') or self.last_detection_result is None: QMessageBox.warning(self, "警告", "没有可保存的检测结果") return save_dir = "results" os.makedirs(save_dir, exist_ok=True) timestamp = time.strftime("%Y%m%d_%H%M%S") if self.is_camera_running or self.is_video_running: # 保存当前帧为图片 save_path = os.path.join(save_dir, f"snapshot_{timestamp}.jpg") cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR)) self.update_status(f"截图已保存: {save_path}") else: # 保存图片检测结果 save_path = os.path.join(save_dir, f"result_{timestamp}.jpg") cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR)) self.update_status(f"检测结果已保存: {save_path}") def closeEvent(self, event): self.stop_detection() event.accept() if __name__ == "__main__": app = QApplication(sys.argv) # 设置应用程序样式 app.setStyle("Fusion") # 创建并显示主窗口 window = MainWindow() window.show() sys.exit(app.exec_())

七、项目

基于深度学习YOLOv10的船舶类型识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)_哔哩哔哩_bilibili

基于深度学习YOLOv10的船舶类型识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1134216.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

React Bits动画组件库:从零构建惊艳用户界面的完整教程

React Bits动画组件库&#xff1a;从零构建惊艳用户界面的完整教程 【免费下载链接】react-bits An open source collection of animated, interactive & fully customizable React components for building stunning, memorable user interfaces. 项目地址: https://git…

Xbox 360改装终极指南:从零开始快速掌握完整流程

Xbox 360改装终极指南&#xff1a;从零开始快速掌握完整流程 【免费下载链接】J-Runner-with-Extras Source code to the J-Runner with Extras executable. Requires the proper support files, package can be found in README 项目地址: https://gitcode.com/gh_mirrors/j…

Instant Meshes实战手册:从零掌握智能重拓扑技巧

Instant Meshes实战手册&#xff1a;从零掌握智能重拓扑技巧 【免费下载链接】instant-meshes Interactive field-aligned mesh generator 项目地址: https://gitcode.com/gh_mirrors/in/instant-meshes Instant Meshes是一款革命性的交互式场对齐网格生成器&#xff0c…

毕业设计救星:用Llama Factory和云端GPU轻松搞定大模型项目

毕业设计救星&#xff1a;用Llama Factory和云端GPU轻松搞定大模型项目 作为一名计算机专业的大四学生&#xff0c;选择AI方向作为毕业课题是个充满挑战的决定。面对实验室资源有限、个人电脑性能不足的困境&#xff0c;如何高效完成大模型项目成为摆在眼前的难题。本文将介绍…

Angular异步核心01, 再识 RxJS:Observable、Observer 与订阅的核心概念

RxJS 作为 Angular 核心依赖的响应式编程库&#xff0c;是理解 Angular 异步操作的关键。很多开发者在使用 Angular 时&#xff0c;仅停留在 “会用” HttpClient、EventEmitter 的层面&#xff0c;却对其底层的 Observable&#xff08;可观察对象&#xff09;、Observer&#…

基于YOLOv10的设备泄漏检测系统(YOLOv10深度学习+YOLO数据集+UI界面+模型)

一、项目介绍 项目背景: 在工业设备运行过程中&#xff0c;油液泄漏是常见但危害严重的问题&#xff0c;可能导致设备损坏、生产停滞甚至安全事故。传统的泄漏检测方法通常依赖于人工巡检或传感器监测&#xff0c;效率较低且难以实时发现泄漏。基于深度学习的目标检测技术能够…

Android Studio开发者福音:本地集成中文TTS SDK方案

Android Studio开发者福音&#xff1a;本地集成中文TTS SDK方案 在移动应用开发中&#xff0c;语音合成&#xff08;Text-to-Speech, TTS&#xff09;正逐渐成为提升用户体验的重要功能&#xff0c;尤其在无障碍阅读、智能助手、儿童教育等场景中发挥着关键作用。对于Android开…

Spring Authorization Server完整指南:从认证到授权的终极解决方案

Spring Authorization Server完整指南&#xff1a;从认证到授权的终极解决方案 【免费下载链接】spring-authorization-server Spring Authorization Server 项目地址: https://gitcode.com/gh_mirrors/sp/spring-authorization-server Spring Authorization Server是Sp…

AI写论文终极对决:宏智树AI“文献+数据+降重”三杀封神,学生党狂喜!

——告别“东拼西凑”&#xff0c;实测这款工具如何让论文效率暴涨300% 官网直达&#xff1a;http://www.hzsxueshu.com | 微信公众号&#xff1a;宏智树AI当“毕业季”变成“论文焦虑季”&#xff0c;当“3天写完3万字”从段子变成现实&#xff0c;AI写论文工具早已从“小众黑…

工程师在端到端测试中的协作要点

一、协作失效的代价&#xff1a;端到端测试的独特性挑战端到端测试&#xff08;E2E Testing&#xff09;作为用户旅程的完整验证&#xff0c;其失败案例中68%源于协作断层&#xff08;2025年QA国际报告&#xff09;。典型症状包括&#xff1a;孤岛化执行&#xff1a;测试团队独…

1小时搭建RabbitMQ面试演示项目:快速验证方案

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容&#xff1a; 创建一个RabbitMQ快速原型生成器&#xff0c;用户选择常见面试场景&#xff08;如消息持久化、集群配置等&#xff09;后&#xff0c;系统自动生成完整的演示项目&#xff0c;包含…

模型动物园:用Llama Factory管理你的多个微调版本

模型动物园&#xff1a;用Llama Factory管理你的多个微调版本 作为一名AI开发者或产品经理&#xff0c;你是否遇到过这样的困扰&#xff1a;团队在多个项目中积累了数十个不同版本的微调模型&#xff0c;它们分散在不同的文件夹、服务器甚至团队成员的个人电脑中&#xff0c;管…

从HuggingFace到Llama Factory:模型微调无缝迁移指南

从HuggingFace到Llama Factory&#xff1a;模型微调无缝迁移指南 如果你已经熟悉HuggingFace生态&#xff0c;但想尝试Llama Factory进行大模型微调&#xff0c;又担心需要重新学习整套工具链&#xff0c;这篇文章就是为你准备的。我将分享如何利用预置镜像快速上手Llama Facto…

如何快速配置NanoPi R5S:终极性能优化完整指南

如何快速配置NanoPi R5S&#xff1a;终极性能优化完整指南 【免费下载链接】nanopi-openwrt Openwrt for Nanopi R1S R2S R4S R5S 香橙派 R1 Plus 固件编译 纯净版与大杂烩 项目地址: https://gitcode.com/GitHub_Trending/nan/nanopi-openwrt 还在为家庭网络卡顿、游戏…

AI助力WSL安装:一键解决环境配置难题

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容&#xff1a; 创建一个AI辅助工具&#xff0c;能够自动检测用户系统环境&#xff0c;智能推荐最适合的WSL版本&#xff08;如WSL1或WSL2&#xff09;&#xff0c;并自动完成从启用Windows功能、…

AI写论文,哪款软件能让你从“码字民工”变“学术指挥官”?深度解析宏智树AI的降维打击

大家好&#xff0c;我是那个总在琢磨如何让论文写作更轻松、更高效的博主。最近后台收到最多的问题就是&#xff1a;“市面上这么多AI工具&#xff0c;写论文到底哪个最好用&#xff1f;” 这个问题&#xff0c;就像问“出行用什么交通工具最好”——去楼下便利店&#xff0c;…

Flask接口如何调用?Sambert-Hifigan API使用详解

Flask接口如何调用&#xff1f;Sambert-Hifigan API使用详解 &#x1f4cc; 背景与应用场景&#xff1a;中文多情感语音合成的工程落地 随着AI语音技术的发展&#xff0c;高质量、富有情感表现力的中文语音合成&#xff08;TTS&#xff09; 在智能客服、有声阅读、虚拟主播等场…

RtAudio跨平台音频编程终极指南:从入门到精通

RtAudio跨平台音频编程终极指南&#xff1a;从入门到精通 【免费下载链接】rtaudio A set of C classes that provide a common API for realtime audio input/output across Linux (native ALSA, JACK, PulseAudio and OSS), Macintosh OS X (CoreAudio and JACK), and Window…

Llama Factory技巧大全:这些隐藏功能让你的效率翻倍

Llama Factory技巧大全&#xff1a;这些隐藏功能让你的效率翻倍 作为一名长期使用 Llama Factory 进行大模型微调的开发者&#xff0c;我深刻体会到每次在新机器上重新配置环境的痛苦。从依赖安装到参数调优&#xff0c;重复劳动不仅浪费时间&#xff0c;还容易因环境差异导致结…

如何用NanoPi R5S打造高效家庭网络中心?

如何用NanoPi R5S打造高效家庭网络中心&#xff1f; 【免费下载链接】nanopi-openwrt Openwrt for Nanopi R1S R2S R4S R5S 香橙派 R1 Plus 固件编译 纯净版与大杂烩 项目地址: https://gitcode.com/GitHub_Trending/nan/nanopi-openwrt 还在为家庭网络卡顿、视频缓冲而…