Saga 分布式事务模式详解

先喝口水,再看一眼分布式系统,然后你会发现:没有事务,心里没底;有了事务,系统要命。

作为一名写了很多年 Java 的老兵,今天我们来聊一个在微服务世界里既不完美、但很实用的方案——Saga 分布式事务模式


一、为什么需要 Saga?(问题从哪来)

在单体应用里,事务是这样的:

BEGIN A 表扣钱 B 表加库存 C 表创建订单 COMMIT / ROLLBACK

一切都很美,直到:

  • 服务被拆成了微服务
  • 数据库被拆成了多个库
  • 本地事务失效了

你会发现:

分布式系统里,没有一个“全局数据库事务”在等你。

传统方案的问题

  • 2PC / XA

    • 强一致
    • 强依赖
    • 强性能杀手

于是我们开始思考:

能不能不要强一致,但系统还能跑?

答案就是:Saga


二、Saga 是什么?(一句话版本)

Saga = 一连串本地事务 + 对应的补偿事务

换句话说:

  • 每一步都先提交
  • 如果后面失败了
  • 按相反顺序补偿回去

听起来是不是有点像:

“做错了事,靠后悔药解决。”

没错,但这药在分布式系统里,很值钱


三、Saga 的核心思想(重要但不复杂)

1️⃣ 本地事务优先

每个服务:

  • 只操作自己的数据库
  • 使用本地事务(Spring @Transactional 那套)

2️⃣ 失败 ≠ 回滚

Saga 的世界里:

  • 失败不是 rollback
  • 而是:

执行补偿操作(Compensation Action)

3️⃣ 最终一致性

  • 中间状态可能不一致
  • 但最终能“对上账”

一句话总结:

Saga 不保证你时时开心,但保证你最后不崩。


四、Saga 的两种经典实现方式

方式一:编排式 Saga(Orchestration)⭐ 推荐

有一个指挥官,统一调度流程。

InventoryServicePaymentServiceOrderServiceSagaCoordinatorInventoryServicePaymentServiceOrderServiceSagaCoordinator创建订单扣款扣库存失败退款(补偿)取消订单(补偿)

优点

  • 流程清晰
  • 易于监控
  • 逻辑集中

缺点

  • 指挥官可能变胖

但对 Java 后端来说,这个“胖”是可以接受的。


方式二:编舞式 Saga(Choreography)

没有指挥官,全靠服务自己“看消息办事”。

事件

事件

失败事件

补偿事件

Order

Payment

Inventory

优点

  • 去中心化

缺点

  • 链路难追踪
  • Debug 靠信仰

一旦系统大了,没人知道谁在跳哪支舞。


五、一个下单场景的 Saga 示例(Java 思路)

正向流程

  1. 创建订单(Order Service)
  2. 扣减余额(Payment Service)
  3. 扣减库存(Inventory Service)

补偿流程

  • 库存失败 → 退款 → 取消订单

伪代码示例(编排式)

publicvoidcreateOrderSaga(CreateOrderCmdcmd){try{orderService.create(cmd);paymentService.pay(cmd);inventoryService.deduct(cmd);}catch(Exceptione){inventoryService.compensate(cmd);paymentService.refund(cmd);orderService.cancel(cmd);throwe;}}

看起来很普通,对吧?

但它解决的是分布式事务这个“世纪难题”。


六、Saga 的几个关键设计点(血泪经验)

1️⃣ 补偿必须是幂等的

  • 可能被调用多次
  • 不能多退钱、多加库存

幂等不是优化,是底线。


2️⃣ 补偿 ≠ 完全回滚

  • 有些操作不可逆(比如发短信)
  • 补偿只能“业务上对等”

分布式系统里,
时间不能倒流,只能对冲。


3️⃣ 一定要有状态表

  • Saga 实例状态
  • 当前执行到哪一步
  • 是否已补偿

否则:

系统一重启,你会失忆。


七、Saga vs 2PC(快速对比)

维度Saga2PC
一致性最终一致强一致
性能
实现复杂度
可用性
微服务友好度⭐⭐⭐⭐⭐

结论一句话:

微服务时代,用 Saga;银行核心,用 2PC。


八、Java 技术栈中的 Saga 实践

常见组合:

  • Spring Boot
  • Spring Transaction
  • 消息队列(Kafka / RocketMQ)
  • 状态表 + 定时补偿

进阶框架:

  • Axon
  • Eventuate Tram
  • 自研 Saga Coordinator(很多公司最终都会走这条路)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1132759.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ComfyUI能做翻译吗?不如试试专用CSANMT镜像

ComfyUI能做翻译吗?不如试试专用CSANMT镜像 🌐 AI 智能中英翻译服务 (WebUI API) 在当前多语言协作与内容全球化的大趋势下,高质量的自动翻译工具已成为开发者、内容创作者乃至企业团队不可或缺的生产力组件。尽管ComfyUI作为一款强大的可视…

中英翻译性能对比:CSANMT vs Google Translate实战测评

中英翻译性能对比:CSANMT vs Google Translate实战测评 📖 背景与测评目标 随着全球化进程加速,高质量的中英翻译服务在跨语言交流、内容本地化和国际业务拓展中扮演着关键角色。当前主流方案包括商业级云翻译平台(如 Google Tran…

手把手教程:从零部署CSANMT中英翻译WebUI界面

手把手教程:从零部署CSANMT中英翻译WebUI界面 🌐 AI 智能中英翻译服务 (WebUI API) 在跨语言交流日益频繁的今天,高质量、低延迟的自动翻译系统已成为开发者和内容创作者的核心工具。本文将带你从零开始部署一个基于 CSANMT 模型的中英翻译 …

如何用M2FP提升社交APP的用户体验:智能贴纸生成

如何用M2FP提升社交APP的用户体验:智能贴纸生成 在当今高度视觉化的社交应用生态中,用户对个性化、互动性强的内容创作功能需求日益增长。从美颜滤镜到动态贴纸,再到AR特效,每一项技术都在试图增强用户的表达力和参与感。而在这背…

M2FP模型错误分析:常见分割问题及解决方案

M2FP模型错误分析:常见分割问题及解决方案 📖 项目背景与技术定位 在当前计算机视觉领域,多人人体解析(Multi-person Human Parsing) 是一项极具挑战性的任务。它要求模型不仅能够准确识别单个人体的细粒度语义区域&am…

技术文档本地化:大规模Markdown文件批量处理

技术文档本地化:大规模Markdown文件批量处理 🌐 AI 智能中英翻译服务 (WebUI API) 项目背景与核心价值 在跨国协作、开源项目国际化以及技术内容出海的背景下,技术文档的本地化已成为研发团队不可忽视的关键环节。传统的翻译方式依赖人工或通…

Markdown文档批量翻译:这款工具支持格式保留

Markdown文档批量翻译:这款工具支持格式保留 🌐 AI 智能中英翻译服务 (WebUI API) 项目背景与核心价值 在跨语言协作日益频繁的今天,技术文档、学术论文、产品说明等中文内容常常需要快速、准确地转换为英文。然而,传统翻译工具在…

中小企业降本新选择:免费AI翻译服务,CPU即可高效运行

中小企业降本新选择:免费AI翻译服务,CPU即可高效运行 🌐 AI 智能中英翻译服务 (WebUI API) 在数字化转型浪潮中,语言障碍成为中小企业拓展国际市场的重要瓶颈。传统商业翻译工具成本高昂、部署复杂,而通用在线翻译服务…

中小企业降本利器:开源AI翻译镜像+CPU部署,成本省70%

中小企业降本利器:开源AI翻译镜像CPU部署,成本省70% 在数字化转型浪潮中,语言障碍成为中小企业拓展国际市场的重要瓶颈。传统商业翻译服务价格高昂、API调用按字计费,长期使用成本不可忽视。而大模型云服务虽功能强大,…

10分钟部署AI翻译API:CSANMT模型Flask服务实战教程

10分钟部署AI翻译API:CSANMT模型Flask服务实战教程 🌐 AI 智能中英翻译服务 (WebUI API) 在多语言交流日益频繁的今天,高质量、低延迟的自动翻译能力已成为许多应用的核心需求。无论是内容本地化、跨语言沟通,还是国际化产品开发…

API接口不稳定?CSANMT内置增强解析器保障输出一致

API接口不稳定?CSANMT内置增强解析器保障输出一致 🌐 AI 智能中英翻译服务 (WebUI API) 在当前全球化背景下,高质量的机器翻译能力已成为多语言内容处理的核心基础设施。无论是跨国企业文档本地化、跨境电商商品描述翻译,还是科研…

基于M2FP的智能舞蹈动作评分系统设计

基于M2FP的智能舞蹈动作评分系统设计 🧩 M2FP 多人人体解析服务:构建精准动作识别的基石 在智能体育与虚拟健身快速发展的今天,如何实现对人类复杂肢体动作的高精度、实时化、语义级感知,成为构建智能评分系统的核心挑战。传统姿态…

开源翻译模型性能对比:CSANMT vs 百度/DeepSeek中英翻译精度实测

开源翻译模型性能对比:CSANMT vs 百度/DeepSeek中英翻译精度实测 📖 项目背景与技术选型动机 随着全球化进程加速,高质量的中英智能翻译服务已成为跨语言沟通的核心基础设施。无论是科研文献、商业文档还是日常交流,用户对翻译结果…

ca证书申请授权达到上限怎么回事?

在数字化浪潮席卷的今天,CA证书已成为构建网络信任基石不可或缺的要素,无论是网站的HTTPS加密、软件的代码签名,还是电子政务、企业内部系统的身份认证,CA证书都扮演着“数字身份证”的关键角色。然而,许多企业或个人在…

如何用M2FP构建一个智能视频监控分析系统?

如何用M2FP构建一个智能视频监控分析系统? 📌 业务场景与技术挑战 在现代安防体系中,传统的视频监控系统已无法满足日益增长的智能化需求。尽管摄像头可以记录下大量视觉数据,但真正有价值的信息往往被“淹没”在海量画面之中。例…

科研文献翻译助手:CSANMT精准还原专业术语表达

科研文献翻译助手:CSANMT精准还原专业术语表达 🌐 AI 智能中英翻译服务 (WebUI API) 在科研写作与国际交流日益频繁的今天,高质量的中英翻译能力已成为研究人员的核心需求之一。尤其在撰写论文、申报项目或阅读外文资料时,如何…

法律合同翻译警示:CSANMT可作初稿但需人工复核

法律合同翻译警示:CSANMT可作初稿但需人工复核 📖 项目简介 在跨国商务、法律合规与知识产权保护日益频繁的今天,高质量中英翻译服务已成为企业与专业人士不可或缺的技术支持。尤其在处理法律合同、协议条款等高风险文本时,语言的…

GitHub项目Readme翻译:开发者友好的自动化方案

GitHub项目Readme翻译:开发者友好的自动化方案 🌐 AI 智能中英翻译服务 (WebUI API) 从开源实践看轻量级翻译系统的工程化落地 在多语言协作日益频繁的今天,高质量、低延迟的中英翻译能力已成为开发者工具链中的关键一环。尤其对于GitHub…

web应用集成技巧:将翻译按钮嵌入现有管理系统

web应用集成技巧:将翻译按钮嵌入现有管理系统 🌐 AI 智能中英翻译服务 (WebUI API) 项目背景与集成价值 在现代企业级 Web 管理系统中,多语言支持已成为提升用户体验和国际化能力的关键需求。尤其对于跨国团队、外贸平台或内容出海类系统…

Dify平台集成方案:将CSANMT作为私有模型节点

Dify平台集成方案:将CSANMT作为私有模型节点 🌐 AI 智能中英翻译服务 (WebUI API) 项目背景与集成价值 在多语言业务场景日益复杂的今天,高质量、低延迟的中英翻译能力已成为智能客服、内容出海、文档本地化等应用的核心基础设施。尽管通用大…