基于用户情感分析的音乐个性化推荐研究(源码+万字报告+讲解)(支持资料、图片参考_相关定制)

目 录
摘要 2
Abstract. 3
一、引言 3
(一)研究背景 3
(二)研究意义 4
二、文献综述 5
(一)用户情感分析 5
(二)个性化推荐 5
三、基于用户情感分析的音乐个性化推荐模型 6
(一)用户情感类型 6
(二)用户情感的影响因素分析 8
(三)基于二元离散选择模型的情感分类模型 12
(四)融合用户情感信息的音乐个性化推荐模型 14
四、网易云音乐个性化推荐实例 16
(一)数据来源及数据处理 16
(二)实例计算 19
(三)推荐效果分析 22
五、结论与展望 24
(一)结论 24
(二)不足与展望 24
参考文献 26

基于用户情感分析的音乐个性化推荐研究 ——以网易云音乐为例
摘要:近些年的时间里,由于人们在生活水平以及经济实力方面都有所提升,人们的生活呈现出多彩多样的状态。站在大众的角度上来讲,很多人在表达情感的时候都会借助音乐的方式对情感进行宣泄,这也充分的表明,人们平日生活中表达情感最重要的途径之一就是音乐。近些年来由于我国的经济以及科技都呈现出快速发展的趋势,很多网络音乐也出现在了大众的视线范围里面,由此大环境的影响,很多人为了满足自身情感的需求,因此对音乐进行了情感分类,本论文通过对网上客户的情感方面进行详细的了解与观察,同时将观察的结果与自身所创建的个性化推荐模型相结合,随后根据客户的需求对其进行个性化音乐定制。经过采样调查,发现本论文的调查结果是非常具有显著性的。
关键词:情感分类;个性化推荐;网易云音乐

Personalized Recommendation Study of Music Based on User Sentiment Analysis:
Take Netease Cloud Music as an Example

Abstract: In recent years, people’s lives have been colorful and diverse due to the improvement of people’s living standards and economic strength. From the perspective of the public, many people use music to express their emotions when expressing their emotions. This also fully indicates that one of the most important ways of emotional expression in people’s daily life is music. In recent years, due to the rapid development of China’s economy and technology, many online music has also appeared in the public’s line of sight. Due to the influence of the big environment, many people have to satisfy their own emotional needs. In the emotional classification, this thesis through the detailed understanding and observation of the emotional aspects of online customers, and the results of the observation and the personalized recommendation model created by themselves, and then personalized music customization according to customer needs. After sampling and investigation, it was found that the survey results of this paper are very significant.
Keywords: Emotional classification,Personalized recommendation, Netease cloud music.

一、引言
(一)研究背景
近些年来,我国的经济以及科技都呈现出迅猛发展的势头,因为受到大环境的影响,人们的生活以及娱乐方式都产生了巨大的变化,在方当今社会中,音乐的存在给人们生活娱乐都带来了极大地乐趣,据了解绝大部分的人调节心情的方式都是听音乐,有时人们在高兴地的时候会选择听音乐,这个时候音乐就扮演者一种幸福催化剂的角色。而人们悲伤的时候也会选择听音乐, 这个时候音乐就扮演着心灵解压剂的角色。当人们处于空闲的时候也会选择听音乐,这个时候音乐就会给我们的无聊生活带来一丝的乐趣。现在的社会中,由于互联网的发展以及移动互联网的进步,以前那种老旧的听音乐的方式已经被数字音乐所取代,之前人们听取音乐的方式都是随身听,而现在则是线上听取音乐,正是基于现在信息的发达使得线上音乐的数量在不断地增多,但是如此庞大的数量基数也为人们在音乐的选择上带来了极大的困难,这样一来,很多的客户都要花费大量的时间在音乐库上找寻自己喜欢的音乐。为了解决音乐数量大,以及人们查找困难的问题,所以就产生了个性化推荐系统。现在来讲,当今时代下以大数据和云计算等先进的而快捷的算法为基础,使得推荐系统变成了现代大家关注的的焦点。在在当今社会信息繁杂的前提下,怎样使得用户可以在海量的信息中找到自己想要的信息,这是非常重要的问题。
(二)研究意义
面对现在信息化的大趋势,很多的商家们为了在海量的信息中脱颖而出,很多都会选择将自己的产品建立一个特有的标签:比如说被大家熟知的天猫以及京东等等,它们都会在用户观看或者是购买的基础上建立个性推荐列表;除此之外的一些音乐软件,例如QQ音乐亦或者是酷狗等也都推出了具有个性的音乐服务…现在社会是信息量剧增的社会,面对如此庞大的信息数量,实行个性化推荐系统可以有效的解决信息量巨大的问题,并且用户通过使用这个系统可以有效的将信息进行筛选从而为自己节约更多的时间并且还可以获得更加精确的网络体验,而在其他的商家来讲,他们也可以从中得到更多的商业价值以及利益。根据资料显示,全世界范围内的歌曲数量达到了600亿,并且这个数量还是以每秒2首的速度在上升[ 张彦博. 文本情感分类的研究[D]. 北京交通大学, 2010.]。因此如果一个商家在创建自己的网站的同时只是想简单的将自己所能搜集的音乐列出来让客户选择的话,那么客户是不会喜欢在海量的音乐中寻找自己喜欢的歌曲的,因为这样一来首先在时间上就没有达到客户的满意,并且客户在筛选信息的时候还会受到大量数据的干扰,因此这也浪费了很多经历以及时间,如此一来一定会造成客户的流失。为了有效的解决这个问题,很多的网站都会采取建立站内搜索的形式来对这个问题进行解决,但是这种做法仅仅只是可以起到一定的缓解作用,同时网站的花销也会增加,而客户的满意度却在不断地下滑。因此基于以上阐述,为了有效的提升客户满意程度就应当将自有的音乐系统同个性化推荐紧密的结合在一起。
二、文献综述
(一)用户情感分析
在信息检索中通常会用到语言应用,而这其中的一个主要的动向就是情感分析。其主要是对用户的文本之中的信息以及客户的主观信息进行有效的解析。根据资料可以查询到早期的情感分析开始于Hearst等学者的相关研究,他们都强调一点那就是当文本被智能化处理的时候,其主要的关注点不应该仅仅局限于文本的主题,同时还要包含文本评论内部的情感极性。而针对于文本情感分析的理解可以涵盖以下三个层面:(1)针对文本自身的客观以及主观的辨别;(2)针对文本的极性辨别;(3)针对文本的极性强度辨别。此外,由于所知道的主观文本其自身主要的内容是引用以及表达观点,因此其经常包含主体的情感。在此之后,我们可以通过计算方法来估计文本的情感极性,最终以实现情感极性的量化。这也是分析主观文本极性强度的目的。[ 李维杰. 情感分析与认知[J]. 计算机科学, 2010, 37(7):11-15]
(二)个性化推荐
个性化推荐是根据用户的特征及偏好,将客户之前在信息以及行为进行分析,从而判断出该客户的喜好以及分类等等,从而可以将客户喜欢的产品以及信息准确的推荐给他。
个性化涉及五个要素首先是消费者:即进入平台查找内容的访问用户。然后是消费平台,再次是内容:由生产者生产出来吸引用户去平台访问。个性化是以内容为根本基础的。生产者可以是用户担当(UGC);可以是有偿或无偿,若是有偿生产就称之为OGC。以UGC为代表,比如各大论坛、博客和微博站点,他们的内容都是由用户自己创造出来的,管理人员的作用只是协调和维护秩序;以OGC为代表例如各大新闻站点、视频网站,他们的内容都是由系统内部人员自己创造出来或者从外部花钱购入版权;而PGC则在上述两种类型的网站中都有参与,既能共享高质量的内容,同时网站提供商又不用支付报酬。最后是反馈也就是消费者在消费平台中的互动行为。网站可以根据这些信息通过相应的方法计算,一段时间之后便可以建立起该用户的常规兴趣模型也就是近期兴趣模型。[ Allan J,Yamron J,Yang Y.Topic Detection and Tranking Pilot Study Final Report.Proceedings of the DARPA.Lansdowne,1998,194-218. ]最后就是应用该模型进行试错,然后根据行为方差进行调整完善从而促使该模型不断上升发展以至于越来越接近用户的真实偏好。
三、基于用户情感分析的音乐个性化推荐模型
(一)用户情感类型
1.用户情感分类
据以往的经验来看,人们可以将自身的情感宣泄出来编织成音乐,而音乐也可以起到表达人们心情的作用,就现在的情感模型来观察,其可以分为两类:第一种是早时期的离散分类模型,其次是以维度分析为基础的分类模型。而本论文此次编写的主要内容是依据第一种的基础上进行撰写的。
通常来讲,所谓的离散情感分类模型主要是基于多彩多样的情感基础上才可以实现的,可是这其中也会有有限情感分类的存在,例如以悲伤或是快乐为基础的情感分类。而其余不同种类的情感都是可以依照这个衍生而来,在这当中被大家熟知的是Hevner情感环,这个可以通过图1进行观察。这个主要是针对音乐分类的时候采用了关键字辨别的方式,其主要的特色是通过很多的关键词进行分类创建起来的情感模型。在Hevner情感环中,可以看到其构成的形容词达到了66个,同时还可以观察到其内环中还拥有8个近义词,这8个情感相互之间的关系是平滑过渡的联系,本个情感分类模型是非常成功的,这主要是因为它可以在有限的情感空间中掺杂无限的情感映射,从而极大的简化了分类的难度[王坤亮. 汉语情感倾向自动分类方法的研究[J]. 软件, 2013(11):73-76]。

图1 Hevner情感环
2.基于Hevner情感环的音乐平台用户情感类型划分
现如今因为网络的发达,网络中出现了大量的音乐,这样一来极大的丰富了客户在网络上的音乐选择。而众所周知现在的时代是以大数据为基础的,在这个时代下,对于音乐的分类方式更多的是以情感为前提的分类。比如说,相同的音乐但是对于不同的客户来感受就会产生不一样的心情以及情感,所以如果将一首音乐用一个标签的进行定义,那么这样做是非常片面而局限的,所以在这种情况下,就必须要采用更全面以及准确的标签对音乐进行情感类别。[ 潘美玲, 胡昌海, 张明明,等. 音乐情感自动分类器研究[J]. 浙江树人大学学报(自然科学版), 2011(4):6-10.]
接下来将眼光放到西方,在西方的心理学领域其把音乐情感划分成2种不同的类别,首先是基于音乐本身的特有属性结构的基础上进行的内在情感的传达,其次是在音乐之外的外部情感。经过细致的研究发现,有2种要素可以左右音乐情感的表达:首先是音乐作品本身,其次是音乐以外的信息。所以本论文在编写的过程中也是将两种因素都充分的考虑在内。
此外还有一个问题那就是关于音乐情感的分类。为了有效的对情感分类进行观察,所以做了一个实验,那就是将600多个音乐片段播放给客户,在听取完毕之后将这些片段采用不同的词汇进行表达以及描述,经过反复的实验可以发现,在这当中不是一切的情绪都是按照一样的概率产生的。因此本论文的编写的过程中为了将难度有效的进行控制,特地将情感划分为正负两级,所谓的正极就是表示积极向上的情感,反正,所谓的负极代表的就是消极悲伤地情感。同时在以Hevner情感环为基础上采用离散情感词进行平稳过渡理念,自一级情感词8个出发以及二级情感词累计起来总共达到74个词,通过选取出现频率最高的词,具体可以参照图2。

图2 以Hevner情感环为基础的分配原则以及情感分类
(二)用户情感的影响因素分析
1.音乐特征
如果想要很好的获得音乐情感分类,首先就必须要得到音乐特征。通过对早期的做法进行研究发现,其主要的获取途径是依赖于音乐的音频属性,一首歌内部在音色以及音高方面的因素都可以展现出不同的情感特性。当今社会因为受到了互联网科技的影响,很多人们都致力于音乐特征的探索,比如说歌曲自身的歌词、评论等等方面。[ 徐欣, 周运, 邵曦. 基于音乐情感特征提取的音乐检索分析[J]. 信息通信, 2011(5):9-12.]就现在的音乐软件上来讲,所有的音乐软件其自身都具备创建音乐情感标签的能力。具体可以参照图3:

图3 音乐情感标签系统
针对于音乐分类这个问题,国内外很多的学者都会对其进行研究与分类,经过不断的研究发现其中还有很多问题有待于解决。在所有的研究方法中比较典型的方法是首先将音乐情感具体的划分为几种特定的类别,例如悲伤以及快乐等等,之后就是按照不同文件的特性进行筛选,然后将筛选出来的文件与标签相对应。所以为了很好的获得音乐特征,也就是说音乐标签,这方面所使用的软件是Foobar[ 来自个人图书馆:《10个不为人知的Foobar2000高级使用技巧》,见http://www.360doc.com/content/15/0201/17/14832860_445503160.shtml]。具体操作可以参照图4,该图是以Foobar2000为例。

图4 Foobar2000使用案例
2.用户自身的属性
一般讲到的用户个体的特性就是其自身的属性,其中包含的主要因素的是性别以及年龄等等,身处于不同阶层的客户其自身的需求也是不一样的,举个例子女性客户和男性客户之间就存在着很大的差别,这种类别的信息在客户的收藏以及个性签名上都会体现出来,例如,当客户是学生的时候,那么其自身通常会倾向于爱情一类的歌曲,但是当工作人群听取歌曲时,其自身通常会选择经典的歌曲,如果客户处于失恋的状态,那么其自然是选择失恋的歌曲,如果客户比较喜欢运动,那么就会选择跑步的歌曲等等。当对客户的表单进行观察时,就可以对该客户的属性进行一定的了解。通过具体观察发现,如果想制定一个客观而有效的评价标准具有很大的难度,因此就只能采用主观感知的方式对客户属性进行感情值的判定,主要的流程如下表1。
表1 用户属性所表征的情感值确定流程
用户属性标注 综合情感值

用户一
年龄 95后

-5
性别 男
个性签名 从前从前,有个人爱你很久
收藏歌单标签 伤感 孤独
3.用户动态分析
近些年来由于科技进步飞快,所以受到这个影响web技术也展现出了强大的发展潜力,因此现在主观性文本在社会媒体上呈现的数量也都在增加,在这当中,很多的客户都和应用程序进行联系并且产生了丰富的信息,这样一来就极大地促进了主观性文本在情感分类研究的应用。[ 廖健, 王素格, 李德玉,等. 基于观点袋模型的汽车评论情感极性分类[J]. 中文信息学报, 2015, 29(3):113-120.]
通过观察网易云音乐可以看出,其自身的评论中可以涵盖的音乐有很多,其中包括了演唱者以及音乐自身的背景等等,除了以上阐述的专业信息之外,评论中涵盖的信息还包含了非业内人员的情感信息,例如有的客户再听取具体某一首歌曲时的心情,心理作用,结合音乐的旋律而来的内心起伏波动。在这些因素的作用下用户再结合自身生活状态和当时的心理状态,同时会将富有个人情绪的信息发布到音乐的评论中。总体来讲其流程图可以参照图5。

图5 上下文信息情感分类流程
在本论文中需要研究的主要对象是听取歌曲的用户,可是一般的用户都会跟对某首歌曲进行评论,所以如果想将单个的客户对于不同种类的乐曲的评论进行总体分析这个工作本身就是具有难度的,基于这种情况,我们可以将研究的方向进行一定的调整,那就是对音乐评论进行细致的研究,经过观察发现,很多用户都会通过发送动态中的言论来表达自己内心的情感状态,对这些言论所花费的研究时间肯定会比针对单个用户进行研究的时间要少很多,这样一来就可以最大程度上降低人工标注工作量。具体的操作可以参照表2。
表2 上下文信息情感值评判样例
上下文信息标注 情感值 平均值

用户一 动态一 后来的我们有了后来而与你无关 -5
3.6666667
动态二 你在选择人,人亦在选择你 -2
动态三 那首歌让你看到了一生 ——
动态四 遥远的她 -4
(三)基于二元离散选择模型的情感分类模型
1.二元离散选择模型简介
通常来讲被大家熟知的结合分析模型就是以所谓的离散模型,其自身是一种非常有使用价值的市场调研技术,同时也在日常生活中也被广泛的使用。这个模型主要是以实验设计为前提,经过对想要分析的目标服务以及产品市场的环境进行分析,在数据的基础上对客户的购买行为进行一系列的预测,最后得出客户针对于不同商品以及价格上的选择状况。[ 辛贤龙. 结合情感信息的个性化推荐算法[J]. 微型电脑应用,2014,30(04):38-40.]所以基于以上阐述,离散选择模型同时也是针对复杂高级多元化的统计分析技术。
为了便于大家理解,本论文对具体案例作出分析:客户进行选择汽车的行为时,一般是将目光放到具体不同的品牌上,比如说奥迪亦或本田等等。举个例子如果客户选择的是奥迪,那么就记作是Y=1,如果客户选择的是本田,那么就记作是Y=2,如果客户选择的是丰田,那么就记作是Y=3,当研究客户的选择品牌时,因为考虑到因变量是并不具有连续的变量(Y=1,2,3),由此可以看出,以前的线性回归模型是存在一些问题的。
如果想建立理性决策,那么可以选择效用最大化原则。例如当进行公交i以及地铁i’进行选择的时候,首先可以假定考虑的方案分为三个类别:K={k1, k2, k3}={花销,时间,稳定性}。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1129614.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

轻量模型新标杆:CSANMT在精度与速度间找到平衡点

轻量模型新标杆:CSANMT在精度与速度间找到平衡点 🌐 AI 智能中英翻译服务(WebUI API) 随着全球化进程的加速,高质量、低延迟的机器翻译需求日益增长。尤其是在跨语言交流、内容本地化和智能客服等场景中,中…

制造业数据采集系统选型指南:从技术挑战到架构实践

在当今竞争激烈的全球市场中,制造业正面临着前所未有的转型压力。随着工业4.0、智能制造和工业互联网概念的深入,数据已成为新的生产要素,而数据采集作为数据价值链的起点,其重要性不言而喻。然而,许多制造企业在推进数…

`mapfile`命令详解:Bash中高效的文本至数组转换工具

mapfile是Bashshell中一个功能强大的内置命令,专为将标准输入或文件内容按行读取到数组而设计。该命令亦可通过别名readarray调用,两者功能完全一致。它为Shell脚本开发者提供了一种高效、简洁的文本处理方式,有效规避了传统基于循环的读取方…

对比测试:M2FP与U-Net在多人场景下的分割精度差异分析

对比测试:M2FP与U-Net在多人场景下的分割精度差异分析 📌 引言:为何需要高精度的多人人体解析? 随着智能安防、虚拟试衣、动作捕捉和人机交互等应用的快速发展,多人场景下的人体语义分割已成为计算机视觉领域的重要研究…

悉尼大学团队破解AI画图“文化失明“之谜

这项由悉尼大学史传成、南京理工大学李尚泽等研究团队完成的研究于2025年11月发表在计算机视觉领域的顶级学术期刊上,论文编号为arXiv:2511.17282。有兴趣深入了解的读者可以通过该编号查询完整论文。当你用中文告诉AI"画一座传统建筑"时,你期…

解读 SQL 累加计算:从传统方法到窗口函数

累加计算是数据分析中的常见需求,例如累计销售额、累计访问量、累计收益等场景。在 SQL 中,存在多种实现累加计算的方法,本文将系统解析各类实现方式及其适用场景。一、基础数据准备首先创建一张销售记录表示例:sql创建销售记录表…

虚拟主播技术揭秘:M2FP如何实现精准面部捕捉?

虚拟主播技术揭秘:M2FP如何实现精准面部捕捉? 在虚拟主播、数字人直播、AR互动等前沿应用场景中,高精度的面部与人体解析技术是实现沉浸式体验的核心基础。传统的动作捕捉系统依赖昂贵硬件和标记点,而现代AI驱动的方案正逐步实现“…

M2FP模型源码解读:理解语义分割核心算法

M2FP模型源码解读:理解语义分割核心算法 📌 引言:从多人人体解析看语义分割的工程落地挑战 在计算机视觉领域,语义分割(Semantic Segmentation)是实现像素级图像理解的核心任务之一。与目标检测不同&…

Markdown数学公式翻译:特殊符号的保护策略

Markdown数学公式翻译:特殊符号的保护策略 🌐 AI 智能中英翻译服务 (WebUI API) 项目背景与技术挑战 在现代科研、工程文档和学术写作中,Markdown 已成为内容表达的标准格式之一。它简洁、可读性强,并天然支持嵌入 LaTeX 数学公式…

M2FP文档详解:从启动到调用的全流程操作手册

M2FP文档详解:从启动到调用的全流程操作手册 🧩 M2FP 多人人体解析服务简介 在计算机视觉领域,人体解析(Human Parsing) 是一项关键任务,旨在对图像中的人体进行像素级语义分割,识别出如头发、面…

上海交大团队重磅突破:让AI大模型推理速度提升24倍的神奇技术

这项由上海交通大学计算机科学与工程学院的徐嘉鸣、潘嘉毅、王汉臻、周永康、叶建才等研究人员,以及清华大学的王瑜教授、无问芯穹公司的戴国浩教授共同完成的研究,发表于2025年的国际顶级会议论文中。这项名为"SpeContext"的技术突破&#xf…

其实申请TC并不难

在我们申请交易证书(TC)时,需遵循一系列要求以确保流程顺利。 以下几点关键注意事项基于最新实践整理。资质匹配:SC证书有效机构一致,买家认证信息无错漏 追溯完整:上游TC/RMD齐全,分包商已备案…

M2FP模型处理遮挡场景的算法原理剖析

M2FP模型处理遮挡场景的算法原理剖析 🧩 多人人体解析中的核心挑战:遮挡问题 在现实世界的视觉应用中,多人共处同一画面是常态。然而,当多个个体发生身体重叠、肢体交叉或空间遮挡时,传统语义分割模型往往难以准确区…

字节机器人学会了“穿鞋带“:83.3%成功率背后的灵巧操作新突破

这项由字节跳动Seed团队完成的突破性研究发表于2025年12月1日的arXiv预印本平台,论文编号为arXiv:2512.01801v1。有兴趣深入了解的读者可以通过该编号查询完整论文。这是全球首个能够自主穿鞋带的学习型机器人系统,在这个看似简单却极其复杂的任务上实现…

基于springboot + vue美食分享管理系统(源码+数据库+文档)

美食分享 目录 基于springboot vue美食分享系统 一、前言 二、系统功能演示 三、技术选型 四、其他项目参考 五、代码参考 六、测试参考 七、最新计算机毕设选题推荐 八、源码获取: 基于springboot vue美食分享系统 一、前言 博主介绍:✌️大…

M2FP资源占用实测:内存峰值控制在2GB以内

M2FP资源占用实测:内存峰值控制在2GB以内 🧩 M2FP 多人人体解析服务 (WebUI API) 项目背景与技术痛点 在当前计算机视觉应用中,人体解析(Human Parsing) 已成为智能服装推荐、虚拟试衣、动作分析等场景的核心技术。传…

震惊!AI三剑客横空出世,小白也能玩转单细胞数据分析!CellAgent框架让你秒变生物数据专家

今天分享一篇在 arXiv 预印的文章,标题是 “CellAgent: An LLM-driven Multi-Agent Framework for Automated Single-cell Data Analysis”。 本文针对单细胞 RNA 测序数据分析推出了 CellAgent,CellAgent 构建了基于大语言模型 LLM 的生物学专家角色——…

人体解析入门指南:M2FP提供完整API文档与调用示例

人体解析入门指南:M2FP提供完整API文档与调用示例 📖 项目简介:M2FP 多人人体解析服务 在计算机视觉领域,人体解析(Human Parsing) 是一项关键的细粒度语义分割任务,旨在将图像中的人体分解为多…

网页内容抓取翻译:CSANMT配合爬虫实现整站中英转换

网页内容抓取翻译:CSANMT配合爬虫实现整站中英转换 🌐 AI 智能中英翻译服务 (WebUI API) 项目背景与技术痛点 在多语言互联网生态中,中文网站的国际化传播面临巨大挑战。传统翻译工具如Google Translate或百度翻译虽具备通用能力&#xff0c…

为什么推荐M2FP给中小企业?零成本+零运维即可上线

为什么推荐M2FP给中小企业?零成本零运维即可上线 在当前AI技术快速普及的背景下,越来越多的中小企业开始探索计算机视觉能力的应用场景——从智能零售试衣到健身动作分析,再到虚拟形象生成。然而,高昂的算力成本、复杂的模型部署流…