企业级 Agent 落地指南:抛弃 ReAct,拥抱 LangGraph,一场关于“确定性”的代码革命!

还记得你第一次跑通 AutoGPT 时的兴奋吗?看着终端里 Agent 自己思考、调用工具、再思考,仿佛 AGI 就在眼前。

但当你试图把这个 Demo 搬进企业生产环境时,噩梦开始了:

  • 死循环:Agent 在两个工具之间反复横跳,直到 Token 耗尽。
  • 路径不可控:你希望它先搜索再总结,它偏偏直接开始瞎编。
  • 无法干预:一旦开始运行,就像脱缰的野马,中间出错完全无法纠正。

企业级应用需要的不是“无限的自由”,而是“可控的智能”。

今天,我们来聊聊LangGraph,以及为什么从 DAG(有向无环图)向 Graph(图)的转变,是 Agent 工程化的必经之路。

一、为什么 ReAct 模式还不够?

经典的 ReAct (Reason + Act) 模式本质上是一个While 循环

while True: reason = llm.think() if is_finish(reason): break action = llm.act() observation = tool.run(action)

这种模式在解决简单问题时很有效,但它有一个致命缺陷:过于依赖 LLM 的实时决策能力。模型必须在每一步都极其精准地决定下一步做什么。一旦中间某一步“幻觉”了,整个链路就会崩塌。

在复杂的业务场景(如长文档写作、代码辅助、复杂客服)中,我们需要的是流程图(Flowchart),而不是一个黑盒循环。

二、LangGraph:以“状态”为核心的编排

LangChain 的团队推出的 LangGraph,核心思想发生了一个巨大的转变:从“链(Chain)”进化到了“状态机(State Machine)”。

核心概念拆解

在 LangGraph 中,一切围绕着三个要素展开:

  1. State(状态):这是一个共享的字典或对象,保存着当前对话的所有上下文(消息历史、中间变量、工具输出)。所有的节点都从这里读数据,往这里写数据。
  2. Nodes(节点):具体的执行单元。它可以是一个 LLM 调用,一个工具函数,或者一段普通的 Python 代码。
  3. Edges(边):连接节点的逻辑。
  • 普通边:跑完 A,就跑 B。
  • **条件边(Conditional Edges):**这才是灵魂!根据 LLM 的输出或当前状态,动态决定下一步去哪里。
相比 LangChain Chain (DAG) 的区别
  • LangChain (Legacy):大多是 DAG(有向无环图)。数据像流水线一样单向流动。处理循环(Loops)非常别扭。
  • LangGraph:支持循环(Cycles)。这使得“自我纠错”和“人机协同”成为可能。

三、实战:构建一个“自我修正”的 Agent

让我们通过一个场景来理解 LangGraph 的威力:代码生成与修复助手

如果是传统的 Chain,你只能写成:生成代码 -> 运行测试 -> 结束。如果测试失败了怎么办?Chain 走完了,任务就失败了。

但在 LangGraph 中,我们可以构建一个闭环:

设计思路:

  1. Node 1 (Coder):负责写代码。
  2. Node 2 (Tester):运行单元测试。
  3. Edge (Router):
  • 如果测试通过 ->End
  • 如果测试失败 -> 把错误信息回传给Node 1(循环回去!)。
代码实现简述
from typing import TypedDict, Annotated, Sequencefrom langgraph.graph import StateGraph, ENDimport operator# 1. 定义状态 (The Memory)class AgentState(TypedDict): messages: Annotated[Sequence[BaseMessage], operator.add] code: str test_result: str# 2. 定义节点 (The Workers)def coder_node(state): # 调用 LLM 生成或修改代码 return {"code": generated_code}def tester_node(state): # 运行代码 result = run_code(state["code"]) return {"test_result": result}# 3. 定义路由逻辑 (The Brain)def router(state): if "ERROR" in state["test_result"]: return "coder" # 回到写代码节点 else: return END # 结束# 4. 组装图workflow = StateGraph(AgentState)workflow.add_node("coder", coder_node)workflow.add_node("tester", tester_node)workflow.set_entry_point("coder")workflow.add_edge("coder", "tester")workflow.add_conditional_edges( "tester", router)app = workflow.compile()

看,这就是状态机的魅力。开发者显式地定义了“如果失败,就重试” 的业务逻辑,而不是指望 LLM 自己灵光一闪去重试。

四、为什么这对企业很重要?

  1. 确定性(Determinism):你可以强制规定 Agent 必须先查数据库,再回答问题,严禁跳过步骤。
  2. 人机回环(Human-in-the-loop):LangGraph 支持在图的运行中“暂停”。比如 Agent 生成了一封邮件草稿,系统暂停,等待人类经理点击“批准”后,再进入“发送邮件”节点。如果经理点击“修改”,则退回到“草稿生成”节点。
  3. 更细粒度的控制:你可以为图中的每一个节点配置不同的 LLM。简单的分类任务用gpt-3.5-turbohaiku,复杂的推理任务用gpt-4osonnet,实现成本的最优解。

五、总结与建议

  • 如果你的任务是线性的(如:翻译 -> 摘要 -> 存库),Chain依然是最好的选择,简单且高效。
  • •如果你的任务涉及循环、分支判断、自我修正或多角色协作,那么请拥抱LangGraph

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1128838.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

银行风控升级:开户地址真实性验证方案

银行风控升级:基于MGeo模型的地址真实性验证方案实战 在信用卡申请等金融业务中,虚构地址是常见的欺诈手段之一。某银行发现大量申请使用虚假地址,但人工抽查覆盖率不足1%。本文将介绍如何利用MGeo多模态地理语言模型构建实时地址验证系统&am…

投影问题解决方案的快速原型设计

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 快速开发一个投影问题诊断工具的最小可行产品(MVP)。核心功能包括:1)基础驱动检测 2)常见错误匹配 3)驱动下载链接提供 4)简单修复按钮。界面只需一个主检测页面和结果…

M2FP人体部位分割教程:Python调用API实现批量图像处理

M2FP人体部位分割教程:Python调用API实现批量图像处理 📖 项目简介:M2FP 多人人体解析服务 在计算机视觉领域,人体部位语义分割(Human Parsing)是理解人物姿态、服装结构和行为分析的关键前置任务。传统的…

用ROOCODE在10分钟内打造一个产品原型

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 使用ROOCODE快速生成一个社交媒体应用的原型,包含用户注册、发帖、点赞和评论功能。根据自然语言描述(如“一个类似Twitter的社交平台”)自动生…

Z-Image-Turbo是否开源?代码仓库与社区支持情况

Z-Image-Turbo是否开源?代码仓库与社区支持情况 阿里通义Z-Image-Turbo WebUI图像快速生成模型 二次开发构建by科哥 在AI图像生成领域,Z-Image-Turbo 作为阿里通义实验室推出的高效图像生成模型,凭借其“1步出图”的极致推理速度和高质量输…

M2FP错误排查手册:常见问题与解决方案汇总

M2FP错误排查手册:常见问题与解决方案汇总 🧩 M2FP 多人人体解析服务概述 M2FP(Mask2Former-Parsing)是基于ModelScope平台构建的先进多人人体解析系统,专注于高精度、像素级的身体部位语义分割任务。该服务不仅支持单…

政务大数据清洗:基于MGeo镜像的地址标准化流水线

政务大数据清洗:基于MGeo镜像的地址标准化流水线实战 在智慧城市项目中,多源地址数据的融合一直是个令人头疼的难题。不同系统采集的地址数据格式各异,存在大量别名、缩写、错别字等问题,导致数据难以直接关联使用。本文将介绍如何…

FPGA vs GPU:深度学习推理的能效比实测对比

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 实现基于FPGA的YOLOv3-Tiny目标检测加速器。要求:1) 支持416x416输入分辨率 2) 量化到8位定点数 3) 包含DDR3内存控制器 4) 提供Python接口 5) 在Zynq-7000上实现PS-PL…

测试人员技术演讲技巧:会议准备

为何会议准备对测试人员至关重要 在软件测试领域,技术演讲是分享知识、推动团队协作的关键环节。测试人员常需在会议中演示测试策略、分析缺陷或推广新工具(如Selenium或JIRA),但缺乏准备可能导致信息混乱、听众流失。例如&#…

不动产登记改革:纸质档案地址数字化实战

不动产登记改革:纸质档案地址数字化实战指南 背景与需求分析 在不动产登记改革过程中,房管局面临一个普遍难题:如何将1950年代至今的房产证手写地址电子化?这些纸质档案中的地址信息存在三大典型问题: 行政区划变迁&am…

面向新一代域控的多维度软件测试方案

随着汽车智能化发展,车型功能日益丰富,导致分布式电子架构下的ECU数量激增,进而引发了控制器兼容性差、维护成本高等一系列问题。为此,行业开始向集成化、域控化方向转型,通过功能整合、集中管理来降低系统复杂性带来的…

用AI自动生成JDK 11环境配置工具,告别繁琐设置

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 请开发一个跨平台的JDK 11环境自动配置工具,要求:1. 支持Windows、MacOS和Linux三大操作系统;2. 自动检测系统环境并下载合适的JDK 11版本&…

Z-Image-Turbo掘金技术博客投稿方向指导

Z-Image-Turbo WebUI 图像快速生成模型二次开发实践指南 引言:从开源项目到定制化AI图像引擎 在AIGC(人工智能生成内容)浪潮中,阿里通义实验室推出的Z-Image-Turbo模型凭借其高效的推理速度和高质量的图像生成能力,迅…

京东关键词的应用场景

京东关键词在 API 层面的应用,是串联商品检索、数据运营、商业决策、工具开发的核心纽带,结合京东开放平台 API(如商品查询、联盟推广、数据统计类接口),其应用场景覆盖电商全链路的技术与商业需求。以下是具体的高频场…

AUGMENT CODE在金融科技中的实际应用案例

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 开发一个金融科技专用的代码增强工具,重点优化交易系统和风险模型的代码。功能包括自动检测安全漏洞、优化算法性能、生成合规性文档。支持与现有CI/CD管道集成&#x…

告别低效!Vue生命周期优化全攻略

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 创建一个性能对比项目:1. 传统方式实现一个数据仪表盘(包含图表、列表和过滤器);2. 优化版本使用生命周期钩子进行:数据分批加载(onMounted)、缓…

AI助力数据库管理:用Navicat连接MySQL的智能优化

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 创建一个AI辅助的Navicat连接MySQL配置工具,能够根据用户输入的数据库信息自动生成最优连接参数,提供连接测试功能,并在连接成功后给出数据库性…

Z-Image-Turbo网络安全意识宣传漫画

Z-Image-Turbo网络安全意识宣传漫画:AI图像生成技术的合规与安全实践 引言:当AI创作遇上网络安全教育 在人工智能加速落地的今天,阿里通义Z-Image-Turbo WebUI图像快速生成模型不仅成为内容创作者的得力工具,更被二次开发应用于…

VS2017下载与实战:企业级项目开发指南

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 开发一个企业级项目管理工具,使用VS2017作为开发环境,支持多模块管理、依赖自动解析和构建优化。工具应提供可视化界面和命令行支持。点击项目生成按钮&…

MCP 与 DeepSeek 融合打造智能体概述

多智能体协作平台(MCP)与先进深度学习技术平台(DeepSeek)的融合,是从“个体智能”到“群体协同智能” 的关键突破。MCP提供分布式多智能体的调度、协调与交互框架,DeepSeek则为单个智能体注入强大的认知、推…