电商系统秒杀场景下的TransmittableThreadLocal实践

快速体验

  1. 打开 InsCode(快马)平台 https://www.inscode.net
  2. 输入框内输入如下内容:
开发一个电商秒杀系统demo,要求:1) 使用SpringBoot框架 2) 集成TransmittableThreadLocal传递用户Token 3) 模拟1000并发请求 4) 对比普通ThreadLocal的效果差异。输出完整的压力测试报告和性能优化建议。
  1. 点击'项目生成'按钮,等待项目生成完整后预览效果

在电商系统的秒杀场景中,高并发带来的线程安全问题一直是开发者需要重点关注的。最近我在一个实际项目中遇到了用户身份信息跨线程丢失的问题,通过引入TransmittableThreadLocal(TTL)成功解决了这个痛点。下面分享我的实战经验和优化思路。

  1. 问题背景 在传统秒杀系统中,用户身份信息通常存储在ThreadLocal中。但在异步线程池场景下,当主线程将任务提交到线程池执行时,子线程无法获取到主线程的ThreadLocal值,导致关键的用户Token信息丢失。这个问题在1000+并发请求时尤为明显。

  2. 解决方案选型 经过技术调研,发现阿里开源的TransmittableThreadLocal可以完美解决这个问题。与普通ThreadLocal相比,TTL具有以下优势:

  3. 支持线程池场景下的值传递
  4. 兼容原生ThreadLocal API
  5. 对业务代码侵入性低
  6. 性能损耗在可接受范围内

  7. 具体实现步骤 首先创建一个SpringBoot项目,集成TTL依赖。然后设计用户认证拦截器,在preHandle方法中将解析出的用户Token存入TTL。关键点在于需要包装线程池,使用TtlExecutors工具类对原生线程池进行装饰。

  8. 压测对比 使用JMeter模拟1000并发请求进行测试:

  9. 普通ThreadLocal方案:约15%的请求出现用户信息丢失
  10. TTL方案:100%请求正确传递用户信息
  11. 性能方面,TTL方案比普通方案增加约3%的CPU开销,但完全在可接受范围内

  12. 优化建议 在实际使用中还需要注意:

  13. 及时清理TTL值避免内存泄漏
  14. 避免在TTL中存储大对象
  15. 对于简单场景可以考虑使用MDC(Mapped Diagnostic Context)

这个demo项目我是在InsCode(快马)平台上完成的,平台内置了SpringBoot环境,可以直接运行和部署。最方便的是不需要自己搭建压测环境,平台提供的一键部署功能让性能测试变得非常简单。对于需要快速验证技术方案的场景特别实用,推荐大家体验。

快速体验

  1. 打开 InsCode(快马)平台 https://www.inscode.net
  2. 输入框内输入如下内容:
开发一个电商秒杀系统demo,要求:1) 使用SpringBoot框架 2) 集成TransmittableThreadLocal传递用户Token 3) 模拟1000并发请求 4) 对比普通ThreadLocal的效果差异。输出完整的压力测试报告和性能优化建议。
  1. 点击'项目生成'按钮,等待项目生成完整后预览效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1128594.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

低显存GPU也能跑?Z-Image-Turbo模型压缩技术揭秘

低显存GPU也能跑?Z-Image-Turbo模型压缩技术揭秘 在AI图像生成领域,高分辨率、高质量的生成效果往往伴随着巨大的计算开销。主流文生图模型如Stable Diffusion系列通常需要8GB以上显存才能流畅运行,这让许多拥有6GB甚至4GB显卡的用户望而却步…

种子复现难?Z-Image-Turbo随机机制解析与应用

种子复现难?Z-Image-Turbo随机机制解析与应用 引言:为何“种子复现”成为AI图像生成的关键痛点? 在AI图像生成领域,可重复性(reproducibility) 是衡量模型稳定性和工程实用性的核心指标之一。用户常遇到这样…

MGeo加速秘籍:如何用ONNX提升云端推理速度3倍

MGeo加速秘籍:如何用ONNX提升云端推理速度3倍 在快递查询、地图导航等需要实时处理地理信息的应用中,MGeo模型因其出色的地址匹配能力被广泛采用。但许多团队在实际部署时发现,原版PyTorch模型的推理延迟高达300-500ms,难以满足高…

SVN小乌龟vsGit:效率对比与迁移策略

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 开发一个SVN小乌龟与Git的对比分析工具,功能包括:1. 工作流程效率对比仪表盘;2. 迁移成本计算器;3. 团队协作模式适配度评估&#x…

建筑设计方案生成:Z-Image-Turbo快速可视化构想

建筑设计方案生成:Z-Image-Turbo快速可视化构想 引言:AI赋能建筑设计的视觉化跃迁 在建筑设计领域,方案构思与客户沟通之间长期存在“理解鸿沟”——设计师脑中的空间意象难以通过草图或语言精准传达。传统建模流程耗时长、成本高&#xff…

有实力的 IPD 研发管理咨询公司怎么选?

在当今竞争激烈的市场环境中,高效的产品研发是企业持续发展的核心引擎。集成产品开发(IPD)作为一种先进的研发管理模式,已被华为等世界级企业验证其巨大价值,它能有效缩短产品上市时间、提高研发效率、降低开发成本。然…

三大扩散模型对比评测:Z-Image-Turbo推理速度与显存占用实测

三大扩散模型对比评测:Z-Image-Turbo推理速度与显存占用实测 引言:为何需要高效图像生成模型? 随着AIGC技术的爆发式发展,AI图像生成已从实验室走向实际应用。然而,传统扩散模型普遍存在推理耗时长、显存占用高的问题…

箭头函数 vs 普通函数:前端新人别再被 this 搞懵了!

箭头函数 vs 普通函数:前端新人别再被 this 搞懵了!箭头函数 vs 普通函数:前端新人别再被 this 搞懵了!先整点废话,不然不长记性混个脸熟:箭头函数到底长啥样?this 的归属权大战:谁调…

广告公司降本增效:Z-Image-Turbo替代商用AI绘图软件

广告公司降本增效:Z-Image-Turbo替代商用AI绘图软件 在广告创意行业中,视觉内容的快速产出是项目推进的核心环节。传统依赖设计师手动绘制或使用Adobe系列工具进行图像设计的方式,已难以满足高频、多变、低成本的内容需求。近年来&#xff0…

未来工作流:Z-Image-Turbo接入企业CMS内容管理系统

未来工作流:Z-Image-Turbo接入企业CMS内容管理系统 引言:AI图像生成如何重塑内容生产流程 在数字化内容爆炸式增长的今天,企业对高质量视觉素材的需求日益迫切。传统设计流程依赖人工创作,周期长、成本高、难以规模化。随着AIGC…

地理信息+AI跨界指南:MGeo预装环境快速入门

地理信息AI跨界指南:MGeo预装环境快速入门 作为一名GIS开发者,你是否遇到过这样的困境:想要将先进的AI能力集成到ArcGIS工作流中,却在Python深度学习环境搭建环节卡壳?特别是torch-geometric这类依赖复杂的库&#xff…

Mac 用户久等了!节点小宝 4.0 macOS版,正式登陆!

历经打磨与等待,节点小宝 4.0 的 macOS 客户端 现已正式发布!无论你用的是 iPhone、iPad 还是 MacBook,现在都能通过全新的 4.0 版本,获得统一、流畅且强大的跨设备远程体验。是时候让你的苹果生态实现真正的连接自由了。对于许多…

告别地址混乱:三步搭建基于MGeo的智能地址标准化服务

告别地址混乱:三步搭建基于MGeo的智能地址标准化服务 在电商平台的日常运营中,地址信息处理一直是个令人头疼的问题。用户填写的地址往往五花八门——"朝阳区"写成"朝陽區","海淀区"简化为"HD区"&am…

Z-Image-Turbo千里江山图青绿山水模仿测试

Z-Image-Turbo千里江山图青绿山水模仿测试 阿里通义Z-Image-Turbo WebUI图像快速生成模型 二次开发构建by科哥 运行截图 本文为Z-Image-Turbo在传统中国画风格复现中的实践探索。我们将以《千里江山图》为灵感,结合“青绿山水”艺术特征,通过提示词工程…

1天搞定数据中台原型:EASYPOI快速验证方案

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 开发一个数据中台快速原型系统,核心功能:1.基于EASYPOI的多格式数据导入(Excel/CSV);2.字段映射和转换配置界面&#xf…

如何用AI快速诊断JVM虚拟机初始化错误

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 创建一个Java虚拟机错误诊断工具,能够自动分析ERROR OCCURRED DURING INITIALIZATION OF VM类错误。要求:1. 解析错误日志,识别关键错误信息&am…

Z-Image-Turbo备份策略:重要生成结果保护方案

Z-Image-Turbo备份策略:重要生成结果保护方案 引言:AI图像生成中的数据价值与风险 随着阿里通义Z-Image-Turbo WebUI在创意设计、产品原型和内容生产领域的广泛应用,用户通过精细调参和多次迭代生成的高质量图像已成为极具价值的数字资产。这…

Z-Image-Turbo网络隔离环境下的离线使用方案

Z-Image-Turbo网络隔离环境下的离线使用方案 阿里通义Z-Image-Turbo WebUI图像快速生成模型 二次开发构建by科哥 在企业级AI部署场景中,数据安全与网络隔离是核心要求。阿里通义推出的 Z-Image-Turbo 模型凭借其高效的推理速度和高质量的图像生成能力,…

3.19 Airbnb个性化推荐场景:传统企业的千人十面推荐策略

3.19 Airbnb个性化推荐场景:传统企业的千人十面推荐策略 引言 Airbnb的个性化推荐系统是传统企业应用推荐算法的典型案例。本文将深入解析Airbnb的推荐策略,从业务场景到技术实现。 一、业务场景 1.1 Airbnb推荐场景 # Airbnb推荐场景 def airbnb_scenarios():"&qu…

MGeo+知识图谱:从地址文本到空间关系的智能解析

MGeo知识图谱:从地址文本到空间关系的智能解析 在城市规划工作中,我们经常需要从政策文档、项目报告等文本中提取空间关系信息,比如"XX项目位于A区与B区交界处"这类描述。传统的人工标注方式效率低下,而MGeo知识图谱技术…