【滤波跟踪】基于MEM-EKF算法的椭圆扩展目标跟踪 MATLAB 代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

👇 关注我领取海量matlab电子书和数学建模资料

🍊个人信条:格物致知,完整Matlab代码获取及仿真咨询内容私信。

🔥内容介绍

扩展目标跟踪旨在基于数量可变的带噪检测结果,同时估计运动目标的运动学状态与形状参数。扩展目标跟踪的核心挑战在于估计问题本身的非线性特性与高维特性。本文提出一种递推卡尔曼滤波器的紧凑闭式表达式,该滤波器可基于分布于目标表面的检测点,直接估计扩展目标的朝向与轴长参数。现有方法或依赖蒙特卡洛近似,或无法直接保留椭圆的全部参数。通过仿真实验,本文将所提新方法的性能与当前主流方法进行了对比验证。

⛳️ 运行结果

📣 部分代码

= plot_extent(ellipse,line_style, color, line_width)

% PLOT_EXTENT plots the extent of an ellipse or circle

% Input:

% ellipse1, 1x5, parameterization of one ellispe [m1 m2 alpha l1 l2]

% line_style, defined as in the Matlab plot function

% color, defined as in the Matlab plot function

% line_width, defined as in the Matlab plot function

%

% Output:

% handle_extent, the handle of the plot

%

% Written by Shishan Yang

center = ellipse(1:2);

theta = ellipse(3);

l = ellipse(4:5);

R = [cos(theta) -sin(theta); sin(theta) cos(theta)]; %rotation matrix

alpha = 0:pi/100:2*pi;

xunit = l(1)*cos(alpha);

yunit = l(2)*sin(alpha);

rotated = R* [xunit; yunit];

xpoints = rotated(1,:) + center(1);

ypoints = rotated(2,:) + center(2);

🔗 参考文献

[1] Yang S , Baum M .Tracking the Orientation and Axes Lengths of an Elliptical Extended Object[J].IEEE Transactions on Signal Processing, 2019, PP(99):1-1.DOI:10.1109/TSP.2019.2929462.

🎈 部分理论引用网络文献,若有侵权联系博主删除

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化\智能电网分布式能源经济优化调度,虚拟电厂,能源消纳,风光出力,控制策略,多目标优化,博弈能源调度,鲁棒优化

电力系统核心问题经济调度:机组组合、最优潮流、安全约束优化。新能源消纳:风光储协同规划、弃风弃光率量化、爬坡速率约束建模多能耦合系统:电-气-热联合调度、P2G与储能容量配置新型电力系统关键技术灵活性资源:虚拟电厂、需求响应、V2G车网互动、分布式储能优化稳定与控制:惯量支撑策略、低频振荡抑制、黑启动预案设计低碳转型:碳捕集电厂建模、绿氢制备经济性分析、LCOE度电成本核算风光出力预测:LSTM/Transformer时序预测、预测误差场景生成(GAN/蒙特卡洛)不确定性优化:鲁棒优化、随机规划、机会约束建模能源流分析、PSASP复杂电网建模,经济调度,算法优化改进,模型优化,潮流分析,鲁棒优化,创新点,文献复现微电网配电网规划,运行调度,综合能源,混合储能容量配置,平抑风电波动,多目标优化,静态交通流量分配,阶梯碳交易,分段线性化,光伏混合储能VSG并网运行,构网型变流器, 虚拟同步机等包括混合储能HESS:蓄电池+超级电容器,电压补偿,削峰填谷,一次调频,功率指令跟随,光伏储能参与一次调频,功率平抑,直流母线电压控制;MPPT最大功率跟踪控制,构网型储能,光伏,微电网调度优化,新能源,虚拟同同步机,VSG并网,小信号模型

🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP置换流水车间调度问题PFSP混合流水车间调度问题HFSP、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1128330.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何用AI快速搭建AD域管理工具?

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 创建一个基于Python的AD域管理工具,主要功能包括:1.用户账号的增删改查 2.用户组管理 3.权限分配与验证 4.密码策略设置 5.批量导入导出用户。要求使用ldap…

MGeo模型能否感知‘楼上’‘楼下’‘隔壁’方位

MGeo模型能否感知“楼上”“楼下”“隔壁”方位?——中文地址语义理解能力深度解析 引言:从地址匹配到空间关系推理的跃迁 在城市治理、物流调度、智慧社区等场景中,地址相似度计算早已超越简单的字符串匹配。真实业务中常面临诸如“北京市…

CFG值怎么调?Z-Image-Turbo参数优化全解析

CFG值怎么调?Z-Image-Turbo参数优化全解析 阿里通义Z-Image-Turbo WebUI图像快速生成模型 二次开发构建by科哥引言:为什么CFG是AI图像生成的核心杠杆? 在使用阿里通义推出的 Z-Image-Turbo WebUI 进行AI图像生成时,用户常面临一个…

TARO开发效率翻倍秘籍:AI工具链深度整合

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 创建一个对比实验:1) 传统方式手动编写TARO登录注册模块 2) 使用AI生成完整鉴权流程代码。要求包含手机号验证、微信一键登录、JWT令牌管理三个方案。输出两份完整代码…

MGeo在城市噪音污染监测点布局中的应用

MGeo在城市噪音污染监测点布局中的应用 引言:从地址语义理解到城市环境治理的智能跃迁 随着城市化进程加速,噪音污染已成为影响居民生活质量的重要环境问题。科学、合理地布设噪音监测点,是实现精准治理的前提。传统方法依赖人工经验或简单地…

懒人专属:一键部署中文地址匹配模型MGeo的云端实战指南

懒人专属:一键部署中文地址匹配模型MGeo的云端实战指南 面对百万级户籍地址数据清洗的紧急任务,传统人工处理方式不仅效率低下,还容易出错。MGeo作为达摩院与高德联合研发的多模态地理文本预训练模型,能够自动标准化处理地址数据&…

markdown转PPT配图:Z-Image-Turbo批量处理

markdown转PPT配图:Z-Image-Turbo批量处理 阿里通义Z-Image-Turbo WebUI图像快速生成模型 二次开发构建by科哥 核心价值:将技术文档、Markdown内容高效转化为高质量PPT配图,借助AI实现视觉表达自动化。 在现代技术传播与产品展示中&#xff…

Z-Image-Turbo艺术展览海报设计辅助应用案例

Z-Image-Turbo艺术展览海报设计辅助应用案例 背景与需求:AI赋能创意设计新范式 在当代数字艺术与视觉传达领域,高效、高质量的图像生成能力已成为设计师的核心竞争力之一。传统海报设计流程依赖专业美术功底、大量素材搜集和长时间的手动调整&#xff…

迁移学习:AI如何加速你的模型开发流程

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 创建一个使用迁移学习的图像分类应用。基于ResNet50预训练模型,实现对新数据集的微调功能。要求包含数据预处理模块、模型微调模块和预测接口。前端展示训练过程可视化…

跨平台方案:将MGeo模型移植到移动端的完整指南

跨平台方案:将MGeo模型移植到移动端的完整指南 为什么需要将MGeo模型移植到移动端? 最近在开发一个社区团购App时,遇到了一个实际需求:用户希望通过拍照直接录入送货地址的门牌号信息。传统OCR方案对复杂地址文本的识别准确率有限…

paperxie 论文查重中的 Turnitin AI 率检测:每日 200 篇免费额度,留学论文的 “合规性利器”

paperxie-免费查重复率aigc检测/开题报告/毕业论文/智能排版/文献综述/aippt https://www.paperxie.cn/checkhttps://www.paperxie.cn/check 在留学论文的提交流程中,“AI 内容检测” 已成为不少高校的硬性要求 —— 而paperxie 论文查重模块中的 Turnitin AI 率检…

Z-Image-Turbo与<!doctype html>:网页内嵌技术方案

Z-Image-Turbo与<!doctype html>&#xff1a;网页内嵌技术方案 从本地WebUI到可嵌入式AI图像生成服务的技术演进 阿里通义Z-Image-Turbo WebUI图像快速生成模型&#xff0c;作为基于DiffSynth Studio框架二次开发的高性能AI图像生成工具&#xff0c;最初以独立运行的本…

MGeo地址相似度系统监控指标设计规范

MGeo地址相似度系统监控指标设计规范 引言&#xff1a;为什么需要专业的监控体系&#xff1f; 在实体对齐与地址匹配场景中&#xff0c;MGeo地址相似度模型作为阿里开源的中文地址语义理解核心组件&#xff0c;已在物流、电商、城市治理等多个关键业务中落地。其目标是判断两条…

全网最全MBA必备AI论文软件TOP8测评

全网最全MBA必备AI论文软件TOP8测评 2026年MBA论文写作工具测评&#xff1a;精准选择&#xff0c;提升效率 在MBA学习过程中&#xff0c;撰写高质量的论文是每位学生必须面对的重要任务。然而&#xff0c;从选题构思到文献综述、数据分析&#xff0c;再到格式规范与语言润色&am…

Python异步爬虫实战:高效采集短视频平台元数据的技术解析与代码实现

一、前言:短视频数据采集的价值与挑战 在数字化内容爆炸的时代,短视频平台已成为信息传播和内容消费的重要阵地。对于数据分析师、内容运营者、市场研究人员和开发者而言,能够高效采集短视频平台的元数据具有重要价值。这些数据包括视频标题、描述、点赞数、评论数、分享数…

边缘计算场景:将MGeo模型部署到靠近数据源的GPU节点

边缘计算场景&#xff1a;将MGeo模型部署到靠近数据源的GPU节点 在智慧城市项目中&#xff0c;地址数据处理服务需要部署在各区政务云节点&#xff0c;既要保证低延迟响应&#xff0c;又要确保敏感数据不传出本地机房。MGeo作为达摩院与高德联合研发的多模态地理文本预训练模型…

AI性能基准测试:Z-Image-Turbo在A10G上的表现

AI性能基准测试&#xff1a;Z-Image-Turbo在A10G上的表现 引言&#xff1a;AI图像生成的效率革命与硬件适配挑战 随着生成式AI技术的快速演进&#xff0c;高效率、低延迟的图像生成模型已成为内容创作、设计辅助和智能应用开发的核心需求。阿里通义推出的 Z-Image-Turbo WebU…

用PANSOU快速构建垂直领域搜索原型

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容&#xff1a; 快速开发一个电商产品搜索原型&#xff0c;集成PANSOU搜索技术。要求实现基础搜索界面、商品分类过滤、排序功能和简单的推荐系统。界面要求响应式设计&#xff0c;能够在移动端良…

Z-Image-Turbo与comfyui对比:节点式VS表单式交互

Z-Image-Turbo与ComfyUI对比&#xff1a;节点式VS表单式交互 技术背景与选型动因 随着AI图像生成技术的普及&#xff0c;用户对生成工具的易用性、灵活性和可扩展性提出了更高要求。阿里通义推出的Z-Image-Turbo模型凭借其高效的推理速度和高质量输出&#xff0c;在本地部署场景…

CUDA核心利用率监控:Z-Image-Turbo性能分析方法

CUDA核心利用率监控&#xff1a;Z-Image-Turbo性能分析方法 引言&#xff1a;AI图像生成中的GPU性能瓶颈洞察 随着阿里通义Z-Image-Turbo WebUI在本地部署场景的广泛应用&#xff0c;用户对生成速度和资源利用效率提出了更高要求。该模型由科哥基于DiffSynth Studio框架二次开发…