大数据领域数据安全防护的最佳实践分享

大数据安全不踩坑:10个实战派最佳实践帮你守住数据生命线

引言:大数据时代,你的数据安全防线牢吗?

当企业每天处理TB级甚至PB级数据时,一次数据泄漏可能引发连锁反应:

  • 某电商平台因用户订单数据未加密,导致100万条收货地址泄露,损失2000万+品牌信任;
  • 某金融机构因Hive表权限配置错误,导致员工误删核心交易数据,恢复成本超500万;
  • 某互联网公司因数据传输未校验,被黑客篡改用户行为数据,影响算法推荐准确性,流失10%用户。

这些不是危言耸听,而是大数据时代真实发生的安全事故。数据是企业的核心资产,但如果没有完善的安全防护,它可能成为“定时炸弹”

你是否遇到过以下问题?

  • 数据采集时,如何避免用户隐私信息(如手机号、身份证号)泄露?
  • 数据存储在HDFS或数据仓库中,如何防止未授权访问?
  • 数据处理时,如何监控恶意篡改或异常访问?
  • 数据共享给第三方时,如何保证敏感数据不被滥用?

本文将从数据全生命周期(采集→存储→处理→传输→共享→销毁)出发,结合企业级实战经验,分享10个大数据安全防护的最佳实践。读完本文,你将掌握:

  • 各环节的核心安全风险与应对方案;
  • 主流大数据安全工具(如Apache Ranger、Atlas、Vault)的落地步骤;
  • 如何构建“可防御、可监控、可追溯”的大数据安全体系。

目标读者

大数据领域从业者(数据工程师、运维人员、安全分析师)及企业IT管理者:

  • 具备基础的大数据技术知识(如Hadoop、Spark、Hive、数据仓库);
  • 希望系统学习数据安全防护的实战方法,而非理论;
  • 面临企业数据安全合规要求(如GDPR、CCPA、《个人信息保护法》)的压力。

准备工作

在开始之前,你需要具备以下基础:

1. 技术栈/知识

  • 熟悉大数据基础架构(Hadoop生态:HDFS、Hive、Spark;数据仓库:Snowflake、BigQuery等);
  • 了解基本的网络安全概念(加密、权限管理、审计、脱敏);
  • 掌握至少一种编程语言(Python/Java/Scala),能读懂代码示例。

2. 环境/工具

  • 大数据平台:推荐使用Cloudera CDHHortonworks HDP(企业级 distributions,内置安全工具);
  • 安全工具:Apache Ranger(权限管理)、Apache Atlas(数据血缘与分类)、HashiCorp Vault(密钥管理)、Flink/Spark(实时监控);
  • 加密工具:OpenSSL(生成证书)、AES-256(数据加密)。

核心内容:大数据全生命周期安全防护实战

一、数据采集阶段:隐私保护与合规——从源头“过滤”风险

风险点

  • 采集用户行为数据时,误收集敏感信息(如手机号、身份证号);
  • 第三方数据接入时,未验证数据来源合法性;
  • 数据格式不规范,导致后续处理时泄露隐私。

最佳实践1:敏感数据“匿名化”处理
做什么:在数据采集环节,对用户隐私信息进行不可逆处理(如哈希、脱敏),避免原始数据泄露。
为什么:即使数据被窃取,匿名化后的数据无法关联到具体个人,符合《个人信息保护法》要求。
代码示例(Flink实时采集)
假设我们需要采集用户的“手机号”数据,用SHA-256哈希处理:

importorg.apache.flink.streaming.api.functions.MapFunction;importjava.security.MessageDigest;importjava.security.NoSuchAlgorithmException;publicclassAnonymizePhoneNumberimplementsMapFunction<String,String>{@OverridepublicStringmap(StringrawPhone)throwsException{// 1. 校验手机号格式(避免无效数据)if(!rawPhone.matches("^1[3-9]\\d{9}$")){thrownewIllegalArgumentException("Invalid phone number: "+rawPhone);}// 2. 哈希处理(不可逆)returnhashSHA256(rawPhone);}privateStringhashSHA256(Stringinput)throwsNoSuchAlgorithmException{MessageDigestmd=MessageDigest.getInstance("SHA-256");byte[]hashBytes=md.digest(input.getBytes());// 转换为十六进制字符串StringBuildersb=newStringBuilder();for(byteb:hashBytes){sb.append(String.format("%02x",b));}returnsb.toString();}}

说明

  • 哈希处理后,原始手机号(如138xxxx1234)会变成a1b2c3...的字符串,无法逆向破解;
  • 保留手机号的“格式校验”,避免脏数据进入系统。

最佳实践2:第三方数据“来源验证”
做什么:接入第三方数据时,通过数字签名验证数据来源的合法性。
为什么:防止黑客伪造第三方数据(如伪造用户交易记录),确保数据真实性。
示例流程

  1. 第三方服务商生成数据文件后,用自己的私钥签名;
  2. 企业采集数据时,用第三方的公钥验证签名;
  3. 验证通过后,才将数据存入系统。
    工具:可以使用GnuPG(GPG)工具实现数字签名与验证。

二、数据存储阶段:加密与访问控制——把数据“锁”起来

风险点

  • 数据存储在HDFS或对象存储(如S3、OSS)中,被未授权用户访问;
  • 磁盘被盗或云存储泄露,导致原始数据泄露;
  • 数据仓库中的敏感表(如用户余额表)未做权限隔离。

最佳实践3:数据存储“加密”——静态加密与动态加密结合
做什么

  • 静态加密:对存储在磁盘或对象存储中的数据进行加密(如HDFS加密区、S3服务器端加密);
  • 动态加密:对数据仓库中的敏感字段(如用户密码、银行卡号)进行加密,只有授权用户能解密。

为什么

  • 静态加密防止“物理泄露”(如磁盘被盗);
  • 动态加密防止“逻辑泄露”(如权限配置错误导致的未授权访问)。

实战步骤(HDFS加密区)

  1. 启用HDFS加密:在hdfs-site.xml中配置:
    <property><name>dfs.encryption.enabled</name><value>true</value></property><property><name>dfs.encryption.key.provider.uri</name><value>kms://http@kms-server:9090/kms</value><!-- KMS服务地址 --></property>
  2. 创建加密区:
    hdfs crypto -createZone -path /user/sensitive_data -keyName sensitive_key
  3. 验证加密:将文件上传到/user/sensitive_data,用hdfs dfs -cat查看,会显示加密后的内容。

最佳实践4:访问控制“最小权限原则”——用Apache Ranger实现细粒度权限管理
做什么

  • 对大数据组件(Hive、HDFS、Spark、Kafka)进行角色-based访问控制(RBAC)
  • 给用户或角色分配“最小必要权限”(如只能读取某张Hive表的部分字段)。

为什么

  • 避免“超级用户”权限滥用(如管理员误删数据);
  • 限制敏感数据的访问范围(如只有财务部门能访问用户余额表)。

实战步骤(Apache Ranger配置Hive权限)

  1. 登录Ranger管理界面(默认地址:http://ranger-server:6080);
  2. 选择“Hive”服务,点击“Add Policy”;
  3. 配置政策:
    • Policy Namefinance_user_hive_access(政策名称);
    • Databasefinance_db(数据库);
    • Tableuser_balance(表);
    • Columnsuser_id, balance(允许访问的字段);
    • Users/Groupsfinance_group(财务部门用户组);
    • PermissionsSELECT(只允许查询);
  4. 保存政策,验证:用finance_group中的用户登录Hive,尝试查询user_balance表的password字段,会提示“权限不足”。

说明

  • Ranger支持列级权限(如只允许访问user_idbalance字段),比Hive自带的权限管理更细粒度;
  • 可以配置行级权限(如只允许访问“上海地区”的用户数据),需要结合Hive的Row Level Security(RLS)。

三、数据处理阶段:实时监控与恶意行为检测——让风险“看得见”

风险点

  • 数据处理任务(如Spark SQL、Flink Job)中,恶意用户篡改数据(如修改用户余额);
  • 异常访问(如某用户在凌晨3点批量查询敏感数据);
  • 处理过程中,数据泄露(如将敏感数据写入未授权的路径)。

最佳实践5:实时监控“数据处理流程”——用Flink/Spark检测异常
做什么

  • 对数据处理任务的输入、输出、中间结果进行实时监控;
  • 定义异常规则(如“批量修改用户余额超过1000元”、“凌晨3点访问敏感表”),触发警报。

为什么

  • 及时发现恶意行为,避免数据被篡改后造成更大损失;
  • 满足合规要求(如GDPR要求“数据处理活动可审计”)。

代码示例(Spark SQL检测异常数据修改)
假设我们有一个user_balance表,需要监控“单次修改余额超过1000元”的操作:

importorg.apache.spark.sql.SparkSessionimportorg.apache.spark.sql.functions._objectBalanceChangeMonitor{defmain(args:Array[String]):Unit={valspark=SparkSession.builder().appName("BalanceChangeMonitor").enableHiveSupport().getOrCreate()// 1. 读取用户余额修改记录(假设来自Kafka)valbalanceChanges=spark.readStream.format("kafka").option("kafka.bootstrap.servers","kafka-server:9092").option("subscribe","user_balance_topic").load().select(from_json(col("value").cast("string"),schema).as("data")).select("data.user_id","data.old_balance","data.new_balance")// 2. 计算余额变化量valbalanceDelta=balanceChanges.withColumn("delta",abs(col("new_balance")-col("old_balance")))// 3. 过滤异常数据(delta > 1000)valabnormalChanges=balanceDelta.filter(col("delta")>1000)// 4. 输出异常结果(到控制台或警报系统)abnormalChanges.writeStream.format("console").outputMode("append").start().awaitTermination()}// 定义Kafka消息的 schemavalschema=StructType(Array(StructField("user_id",StringType),StructField("old_balance",DoubleType),StructField("new_balance",DoubleType)))}

说明

  • 用Spark Streaming读取Kafka中的用户余额修改记录;
  • 计算余额变化量(delta),过滤出超过1000元的异常记录;
  • 将异常结果输出到控制台,或集成到警报系统(如Prometheus+Grafana、ELK)。

最佳实践6:审计“数据处理操作”——用Apache Atlas追踪数据血缘
做什么

  • 使用Apache Atlas记录数据的来源、处理过程、目的地(即“数据血缘”);
  • 当数据出现问题时,快速定位到“哪个处理任务修改了数据”、“修改者是谁”。

为什么

  • 数据血缘是“可追溯性”的核心,符合GDPR的“数据主体访问权”要求;
  • 帮助企业快速排查数据质量问题(如“为什么用户余额不对?”)。

实战步骤(Apache Atlas标记敏感数据)

  1. 登录Atlas管理界面(默认地址:http://atlas-server:21000);
  2. 选择“Hive”→“Tables”,找到finance_db.user_balance表;
  3. 点击“Edit Tags”,添加敏感数据标签(如PII(个人身份信息)、Sensitive(敏感));
  4. 当有处理任务访问该表时,Atlas会记录“访问者”、“访问时间”、“操作类型”(如SELECTUPDATE)。

说明

  • Atlas支持自动数据血缘(如Spark SQL任务执行后,自动记录输入表和输出表的关系);
  • 可以通过Atlas的API查询数据血缘:http://atlas-server:21000/api/atlas/v2/lineage/table/finance_db.user_balance

四、数据传输阶段:加密与完整性校验——让数据“安全过马路”

风险点

  • 数据在网络传输过程中被窃取(如Hive客户端到Hive Server的传输);
  • 数据被篡改(如黑客修改Kafka中的消息);
  • 传输协议不安全(如使用HTTP而不是HTTPS)。

最佳实践7:数据传输“加密”——用SSL/TLS保护通道
做什么

  • 对大数据组件之间的传输通道进行加密(如Hive Server 2的SSL配置、Kafka的SSL配置);
  • 使用HTTPS代替HTTP传输数据(如REST API接口)。

为什么

  • 防止“中间人攻击”(MITM),确保数据传输的机密性;
  • 符合企业安全规范(如PCI DSS要求传输敏感数据时使用加密)。

实战步骤(Kafka SSL配置)

  1. 生成SSL证书(使用OpenSSL):
    # 生成CA证书openssl req -new -x509 -keyout ca.key -out ca.crt -days3650# 生成Kafka broker证书(用CA签名)openssl req -new -keyout broker.key -out broker.csr openssl x509 -req -in broker.csr -CA ca.crt -CAkey ca.key -out broker.crt -days3650
  2. 配置Kafka broker(server.properties):
    listeners=SSL://kafka-server:9093 ssl.keystore.location=/path/to/broker.keystore.jks ssl.keystore.password=your_password ssl.truststore.location=/path/to/ca.truststore.jks ssl.truststore.password=your_password ssl.enabled.protocols=TLSv1.2,TLSv1.3
  3. 配置Kafka客户端(producer.properties/consumer.properties):
    security.protocol=SSL ssl.truststore.location=/path/to/ca.truststore.jks ssl.truststore.password=your_password

说明

  • SSL证书需要定期更新(如每年一次);
  • 可以使用Let’s Encrypt免费证书(适用于公网环境)。

最佳实践8:数据传输“完整性校验”——用哈希值验证数据
做什么

  • 在数据传输前,计算数据的哈希值(如MD5、SHA-256);
  • 接收方收到数据后,重新计算哈希值,与发送方的哈希值对比,确保数据未被篡改。

为什么

  • 即使传输通道加密,也能防止数据被篡改(如黑客修改加密后的消息);
  • 简单有效,适合批量数据传输(如HDFS跨集群复制)。

示例流程(HDFS跨集群复制)

  1. 发送方:计算文件的哈希值:
    hdfs dfs -cat /user/data/file.txt|sha256sum>file.txt.sha256
  2. 发送方:将file.txtfile.txt.sha256复制到接收方集群:
    distcp hdfs://source-cluster:8020/user/data/file.txt hdfs://target-cluster:8020/user/data/ distcp hdfs://source-cluster:8020/user/data/file.txt.sha256 hdfs://target-cluster:8020/user/data/
  3. 接收方:验证哈希值:
    hdfs dfs -cat /user/data/file.txt|sha256sum>file.txt.sha256.localdifffile.txt.sha256 file.txt.sha256.local

说明

  • 如果diff命令没有输出,说明数据未被篡改;
  • 可以使用hadoop distcp-checksum选项,自动验证哈希值。

五、数据共享阶段:脱敏与权限审计——让数据“安全共享”

风险点

  • 将敏感数据共享给第三方(如合作伙伴、数据分析公司)时,未做脱敏处理;
  • 第三方滥用数据(如将用户手机号用于营销);
  • 共享数据的访问记录未审计,无法追溯。

最佳实践9:敏感数据“脱敏”——用掩码/替换隐藏敏感信息
做什么

  • 对共享的敏感数据进行脱敏处理(如手机号掩码为138xxxx1234、身份证号掩码为310101xxxxxx1234);
  • 根据数据用途选择脱敏方式(如“ analytics”用途可以用“泛化”,“测试”用途可以用“替换”)。

为什么

  • 防止第三方滥用敏感数据(如泄露用户隐私);
  • 符合《个人信息保护法》要求(“处理个人信息应当遵循最小必要原则”)。

工具与示例

  • Apache Hive:使用mask函数脱敏:
    SELECTuser_id,mask(phone_number,'xxx-xxxx-',3,7)ASmasked_phone,-- 掩码为138-xxxx-1234mask(id_card,'xxxxxx-xxxx-',6,10)ASmasked_id_card-- 掩码为310101-xxxx-1234FROMuser_info;
  • IBM InfoSphere:企业级脱敏工具,支持更复杂的脱敏规则(如“保留前3位,后4位,中间用*代替”)。

最佳实践10:共享数据“权限审计”——用Ranger+Atlas实现全链路追溯
做什么

  • 对第三方访问共享数据的操作进行审计(如“谁访问了数据?”、“访问了什么数据?”、“访问时间?”);
  • 当第三方滥用数据时,快速定位到“哪个用户做了什么操作”。

实战步骤

  1. 使用Apache Ranger配置第三方用户的权限(如只允许访问脱敏后的user_info表);
  2. 使用Apache Atlas记录第三方用户的访问记录(如“user_analyst”在2024-01-01 10:00查询了user_info表的masked_phone字段);
  3. 使用ELK Stack(Elasticsearch+Logstash+Kibana)收集Ranger和Atlas的审计日志,生成可视化报表(如“第三方用户访问次数Top10”、“敏感数据访问趋势”)。

六、数据销毁阶段:安全删除与验证——让数据“彻底消失”

风险点

  • 数据删除后,未彻底清除(如HDFS的“回收站”未清空,导致数据被恢复);
  • 云存储中的数据删除后,未验证是否彻底删除(如AWS S3的“版本控制”未关闭,导致旧版本数据残留);
  • 硬盘报废时,未做物理销毁(如将硬盘卖给二手市场,导致数据泄露)。

最佳实践11:数据“安全删除”——覆盖+验证
做什么

  • 对需要删除的数据,使用多轮覆盖(如用0和1覆盖磁盘空间);
  • 验证数据是否彻底删除(如用工具扫描磁盘,确认没有残留)。

实战步骤(HDFS安全删除)

  1. 关闭HDFS回收站(避免数据被恢复):
    core-site.xml中配置:
    <property><name>fs.trash.interval</name><value>0</value><!-- 0表示关闭回收站 --></property>
  2. 删除数据:
    hdfs dfs -rm -r -skipTrash /user/sensitive_data
  3. 验证删除:
    hdfs dfs -ls /user/sensitive_data# 应该返回“不存在”

最佳实践12:硬盘“物理销毁”——粉碎+消磁
做什么

  • 对于报废的硬盘,使用硬盘粉碎机粉碎(颗粒大小≤5mm);
  • 对于无法粉碎的硬盘(如SSD),使用消磁机消磁(磁场强度≥10000高斯)。

为什么

  • 物理销毁是最彻底的方式,防止数据被恢复(如使用TestDisk等工具恢复删除的数据);
  • 符合企业安全规范(如ISO 27001要求“对废弃介质进行安全处置”)。

进阶探讨:大数据安全的“未来方向”

1. 自动化与智能化:用AI检测异常行为

  • 问题:传统的规则-based监控(如“delta > 1000”)无法覆盖所有异常场景(如“缓慢的、小额的余额盗窃”);
  • 解决方案:使用机器学习(如异常检测算法Isolation Forest、Autoencoder)分析用户行为,识别“异常模式”(如“某用户连续7天每天修改10个用户的余额,每个修改100元”);
  • 工具:Spark MLlib、TensorFlow、AWS Fraud Detector。

2. 多云环境下的大数据安全

  • 问题:企业数据分布在多个云平台(如AWS S3、阿里云OSS、Azure Blob Storage),安全管理分散;
  • 解决方案:使用多云安全管理平台(如Palo Alto Networks Prisma Cloud、IBM Cloud Pak for Security),统一管理多云数据的加密、权限、审计;
  • 关键:确保多云环境下的“数据一致性”(如加密密钥统一管理、权限政策统一配置)。

3. 数据安全合规:从“被动应对”到“主动规划”

  • 问题:GDPR、CCPA、《个人信息保护法》等法规要求企业“明确数据处理目的”、“获得用户同意”、“提供数据删除通道”;
  • 解决方案
    • 建立数据映射表(Data Map):记录数据的“来源、用途、存储位置、共享对象”;
    • 实现数据主体请求自动化(如用户通过API请求删除自己的数据,系统自动触发删除流程);
    • 定期进行安全审计(如每年一次GDPR合规检查)。

总结:构建“全生命周期”的大数据安全体系

本文从数据采集→存储→处理→传输→共享→销毁的全生命周期出发,分享了12个大数据安全防护的最佳实践,核心要点如下:

  • 源头控制:采集时匿名化敏感数据,验证第三方数据来源;
  • 存储保护:加密静态数据,用Ranger实现细粒度权限管理;
  • 处理监控:实时检测异常行为,用Atlas追踪数据血缘;
  • 传输安全:加密传输通道,验证数据完整性;
  • 共享合规:脱敏敏感数据,审计第三方访问;
  • 销毁彻底:安全删除数据,物理销毁硬盘。

通过这些实践,企业可以构建“可防御、可监控、可追溯”的大数据安全体系,守住数据这条“生命线”。

行动号召:一起守护大数据安全!

如果你在实践中遇到以下问题:

  • 不知道如何选择大数据安全工具?
  • 遇到了难以解决的安全问题?
  • 有更好的安全实践想分享?

欢迎在评论区留言讨论!也可以关注我的公众号“大数据实战派”,后续会分享更多企业级大数据安全案例(如某银行的大数据安全体系建设、某电商的用户隐私保护实践)。

最后,提醒大家:数据安全不是“一次性项目”,而是“持续的过程”。定期评估安全风险,更新安全政策,才能适应大数据时代的变化!

下一篇预告:《大数据安全工具选型指南:Ranger vs Sentry vs Atlas,该选哪个?》

我们下次见! 🛡️

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1125163.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Springboot劳务派遣人事系统gjfr3(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。

系统程序文件列表项目功能&#xff1a;用工单位,劳动者,岗位招聘,劳务派遣,工资账套开题报告内容一、选题背景与意义&#xff08;一&#xff09;选题背景随着劳务派遣市场的快速发展&#xff0c;其作为一种灵活高效的用工方式&#xff0c;被越来越多的企业所采用。据人社部统计…

分页(Paging)完全解析

分页&#xff08;Paging&#xff09;完全解析 &#x1f3af; 一句话概括 分页 把内存切成固定大小的页&#xff0c;通过页表实现虚拟地址到物理地址的映射&#xff0c;让程序以为自己拥有连续的大内存&#xff0c;实际物理内存可以是不连续的碎片。 &#x1f3d7;️ 核心概念&…

分页(Paging)完全解析

分页&#xff08;Paging&#xff09;完全解析 &#x1f3af; 一句话概括 分页 把内存切成固定大小的页&#xff0c;通过页表实现虚拟地址到物理地址的映射&#xff0c;让程序以为自己拥有连续的大内存&#xff0c;实际物理内存可以是不连续的碎片。 &#x1f3d7;️ 核心概念&…

MCP 很火,来看看我们直接给后台管理系统上一个 MCP?

一、什么是 MCP 引用一些官方的介绍吧&#xff1a; Model Context Protocol (MCP) 是一个开放协议&#xff0c;它使 LLM 应用与外部数据源和工具之间的无缝集成成为可能。无论你是构建 AI 驱动的 IDE、改善 chat 交互&#xff0c;还是构建自定义的 AI 工作流&#xff0c;MCP 提…

大数据领域Doris与MongoDB的集成方案

大数据领域Doris与MongoDB的集成方案&#xff1a;从业务痛点到实时分析的完美闭环 1. 引入&#xff1a;当“灵活存储”遇到“实时分析”的两难 凌晨2点&#xff0c;电商运营小李盯着电脑屏幕皱起眉头——他要统计“618大促期间&#xff0c;华南地区18-25岁用户的商品浏览→加购…

美团Java后端Java面试被问:Kafka的零拷贝技术和PageCache优化

1. 零拷贝技术&#xff08;Zero-Copy&#xff09; 传统数据拷贝流程&#xff08;4次拷贝&#xff0c;4次上下文切换&#xff09; java 复制 下载 // 传统文件读取发送流程&#xff08;非零拷贝&#xff09; 1. 磁盘 → 内核缓冲区&#xff08;DMA拷贝&#xff09; 2. 内核缓…

导师严选10个AI论文写作软件,专科生轻松搞定毕业论文!

导师严选10个AI论文写作软件&#xff0c;专科生轻松搞定毕业论文&#xff01; AI 工具如何让论文写作变得轻松高效 在当前的学术环境中&#xff0c;越来越多的学生开始借助 AI 工具来辅助论文写作。尤其是对于专科生而言&#xff0c;面对繁重的论文任务&#xff0c;传统的写作方…

HeiXi 配置 Metahuman

效果&#xff1a;PlayerStart(实例) 配置&#xff1a;位置 (0,149,120)角度&#xff1a;(0,-10,-90)

导师严选10个一键生成论文工具,本科生毕业论文必备!

导师严选10个一键生成论文工具&#xff0c;本科生毕业论文必备&#xff01; 论文写作的“救星”来了&#xff0c;AI 工具如何帮你轻松应对毕业压力&#xff1f; 对于本科生来说&#xff0c;撰写毕业论文不仅是学术能力的考验&#xff0c;更是时间与精力的双重挑战。而随着 AI 技…

高德扫街榜2026发布:首个全季节、全品类、全人群和全球化的真实榜单

2026年1月7日&#xff0c;阿里巴巴集团旗下高德正式发布高德扫街榜2026——在原有的“真实”核心理念基础上&#xff0c;围绕数字、信任与科技三大核心力量全面升级&#xff0c;发布了飞行街景、时令榜单、AR实景、好友动态等一系列新功能&#xff0c;推动生活服务榜单进入“比…

The following modules are missing or built with a different engine version:

The following modules are missing or built with a different engine version:我把 插件ACEUnrealPlugin-5.3 放到一个ue5.6项目的Plugins中&#xff0c;打开ue5.6项目然后5.6再打开就报异常&#xff1a;The following modules are missing or built with a different engine…

优雅阅读实时热闻,畅享新闻新体验✨

Elegant阅读&#xff1a;实时热点新闻的优雅呈现 在信息瞬息万变的时代&#xff0c;获取最新、最热门的新闻已经成为我们生活中不可或缺的一部分。为此&#xff0c;Elegant阅读项目应运而生&#xff0c;它旨在为用户提供一个简洁优雅的界面&#xff0c;让用户随时随地都能轻松…

命令替换(Command Substitution)详解

命令替换&#xff08;Command Substitution&#xff09;详解 &#x1f3af; 一句话概括 命令替换 把一个命令的输出作为另一个命令的参数或变量值。这是Shell编程中最强大、最常用的功能之一&#xff01; &#x1f4a1; 核心概念 基本语法 # 两种语法都有效 command # 反引…

[特殊字符] Pathway:高效的Python ETL框架,助力实时数据处理与分析

Pathway 实时数据处理框架介绍 在当今数据驱动的时代&#xff0c;能够有效处理实时数据流与批量数据的工具愈加重要。Pathway是一个用于流处理、实时分析、LLM&#xff08;大语言模型&#xff09;管道和RAG&#xff08;实时生成&#xff09;应用的Python ETL框架。它为用户提供…

星空计划亮相2026年CES,全球化战略进程加速

今年的CES又添新秀。1月6日&#xff0c;星空计划首次登陆CES&#xff0c;携概念车Nebula Next 01 Concept正式亮相&#xff0c;展示了其先锋设计语言以及对高性能新能源架构的前瞻性探索。作为一家以技术研发与产品探索为核心的创新型科技公司&#xff0c;此次亮相意味着星空计…

MybatisPlus-快速入门

介绍 官网介绍&#xff1a;简介 | MyBatis-Plus 作用&#xff1a;提高单表CRUD操作的效率 快速开始 实现下列功能&#xff1a; 新增用户功能根据id查询用户根据id批量查询用户根据id更新用户根据id删除用户 引入MybatisPlus的起步依赖 MyBatisPlus官方提供了starter&…

高德扫街榜100天全新升级:从美食到吃喝玩乐,全球首次实现飞行实景探店

1月7日&#xff0c;上线100天的高德扫街榜宣布三大重磅升级&#xff1a;依托世界模型发布全球首个“飞行街景”&#xff0c;实现从街景一路俯瞰至店内实景&#xff1b;推出全球首个应季、应时、应地的生活服务动态榜单&#xff1b;引入好友关系&#xff0c;新增好友动态和个人榜…

论文67分神话创造者:7000篇论文实战淬炼,金老师带你锁定2026年高项通关“生死关”

如果说软考高项是一场战役&#xff0c;那么论文就是决定最终胜负的“天王山之战”无数考生折戟于此——背熟了知识&#xff0c;练会了计算&#xff0c;却倒在了最后这3000字的“纸面上”。然而&#xff0c;有这样一位老师&#xff0c;他让论文从“拦路虎”变成了学员的“提分利…

2026年入局AI行业:普通人的机会在哪里?

作为一个在AI领域摸爬滚打一年多的年轻人&#xff0c;我亲身体验了普通人如何通过AI实现经济独立。在我还未毕业的情况下&#xff0c;通过自学AI技术和应用&#xff0c;已经实现了完全的经济自由。今天&#xff0c;我想分享我的观察和思考&#xff0c;希望能为同样想抓住AI浪潮…

操作系统期末复习——第5章:输入/输出

目录5.2 I/O软件原理5.2.1 I/O软件的目标5.2.2 程序控制I/O5.2.3 中断驱动I/O5.2.4 使用DMA的I/O5.3 ⭐I/O软件层次5.3.1 中断处理程序5.3.2 ⭐设备驱动程序&#xff08;Device Driver&#xff09;5.3.3 ⭐Device-Independent的OS软件5.3.4 功能5.3.5 总结5.4 Disks5.4.1 盘硬件…