2026年!AI Agent核心技术大揭秘!独家完整学习路径,大模型学习路线超详细,建议收藏!

简介

本文全面介绍AI Agent的概念、构成(规划、记忆、工具)和分类,分析其优势(任务导向、自然交互、进化决策)与局限(可靠性、成本),强调对企业和个人的重要意义,详细阐述企业知识助手、数据分析助手等应用场景,为读者提供系统学习AI Agent的路径和方法。


1、AI Agent的概念

AI Agent(智能体)是一种不需要持续人类干预的AI系统,可以基于环境和背景信息,自主分析各种问题,做出逻辑决策,并且在没有持续人类输入的情况下处理多种任务。

  • Perception(输入):AI Agent通过文字输入、传感器、摄像头、麦克风等等,建立起对外部世界或环境的感知。
  • Brain(大脑):大脑是AI Agent最重要的部分,包括信息存储、记忆、知识库、规划决策系统。
  • Action(行动):基于Brain给出的决策进行下一步行动,主要包括对外部工具的API 调用,或者对物理控制组件的信号输出。

2、AI Agent的构成

目前在大模型热潮的背景下,媒体上所讲的AI Agent,更严格意义上来说应该叫LLM Agent,因为整个Agent最重要的控制中枢Brain,其底层是LLM大模型。

2.1、AI Agent - Planning

Planning是整个AI Agent中最核心最关键的部分,Agent会把大型任务分解为子任务,并规划执行任务的流程。同时Agent还会对任务执行的过程进行思考和反思,从而决定是继续执行任务,还是判断任务完结并终止运行。

子任务分解:

1、思维链(COT)推理

思维链是指一系列有逻辑关系的思考步骤,形成一个完整的思考过程。把推导过程写出来提供给大模型,大模型就可以做相对复杂的推理任务。

2、 思维树TOT是对思维链CoT的进一步扩展,在思维链的每一步,推理出多个分支,拓扑展开成一棵思维树。

反思和完善:
1、ReAct**全称是Reasoning-Action,这种模式是让大模型先进行思考,思考完再进行行动,然后根据行动的结果再进行观察,再进行思考,这样一步一步循环下去。2、Reflexion

是一个为 Agent 配备了动态记忆和自我反思能力的框架,能够提高 Agent 的推理能力。Reflexion 具有标准的强化学习机制,其奖励模型提供了一个简单的二进制奖励机制,执行空间则遵循 ReAct 中的设置

3、Basic Reflection

本质是利用左右互搏来实现协同进化。比如设计一个帮助用户完成市场调研报告的Agent系统,其中Generator负责输出,Reflector负责检查,通过两个角色之间不断的协同,来实现整个任务的反思和完善
这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

2.2、AI Agent - Memory

感官记忆是对原始输入的嵌入表征的理解,包括文本、图像或其他模式,比如图片的纹理和风格。短时记忆即上下文学习,由于受到Transformer上下文窗口长度的限制,它是短暂的和有限的。长期记忆则可对应为外部的向量数据存储,Agent 可在查询时引用,并可通过快速检索进行访问。

感官记忆:这是记忆的最早阶段,能够在原始刺激结束后保留对感官信息(视觉、听觉等)的印象,通常只能持续几秒钟。包括图标记忆、回声记忆和触觉记忆三种类型。

短期记忆:短时记忆(STM)或工作记忆: 指的是我们当前意识到的信息,或者在学习和推理等复杂认知任务中所需要的信息。

长期记忆:长时记忆指的是能够存储很长时间,从几天到几十年不等的信息,它的存储容量基本上是无限的。长时记忆又包括显性记忆和隐性记忆

2.3、AI Agent - Tool

为AI Agent配备工具API,比如计算器、搜索工具、代码执行器、数据库查询等工具,AI Agent就可以和物理世界交互,来解决更加实际的问题。

1、TALM&Toolformer

TALM和ToolFormer都是对 LLM 进行微调,以学习使用外部工具API。该数据集根据新增的 API 调用注释是否能够提高模型输出的质量而进行扩展。

2、HuggingGPTHuggingGPT是一个使用ChatGPT作为任务规划器的框架,ChatGPT 可根据模型的描述选择 HuggingFace 平台中可用的模型,并根据执行结果总结响应结果

3、API Bank它包含 53 种常用的 API 工具、完整的工具增强的 LLM 工作流程。API 的选择相当多样化,包括搜索引擎、计算器、日历查询、智能家居控制、日程管理、健康数据管理、账户认证工作流程等

4、Function Calling通过API调用LLM时,调用方可以描述函数,包括函数的功能描述、请求参数说明、响应参数说明,让LLM根据用户的输入,合适地选择调用哪个函数

3、AI Agent的分类

按工作模式分类:

  • 单Agent:即通过单一的Agent来解决问题,不需要与其他Agent进行交互
  • 多Agent:这种模式侧重于多个Agent之间的互动和信息共享,多个Agent协同工作,相互交流信息,共同完成更复杂的任务或目标
  • 混合Agent:这种模式中,Agent系统和人类共同参与决策过程,交互合作完成任务,强调的是人机协作的重要性和互补性

按决策方式分类

  • 简单反射型Agent:基于“如果-那么”规则直接响应当的环境状态,不存储任何历史数据或状态。
  • 基于模型的反射型Agent:拥有环境的内部模型,能够基于对环境的理解和过去的经验做出更复杂的决策。
  • 基于目标的Agent:这类Agent的决策方式,从根本上不同于前面描述的条件-动作规则,因为它涉及对未来的考虑。
  • 基于效用的Agent:基于效用的Agent旨在最大化效用功能或价值,精心挑选具有最高预期效用的行动,以衡量结果的有利程度
  • 学习型Agent:这些Agent设计用于在未知环境中运行,从自己的经历中学习,并随着时间的推移调整自己的行动。
  • 基于逻辑的Agent:通常基于一系列逻辑规则,通过推理来解决问题,适合需要高度逻辑判断的场景

4、AI Agent的产生原因

从技术发展的局限性考虑:

LLM大模型出来之前

规则方法:把复杂的自然语言问题转化为规则符号,往往 需要行业专家的介入,缺乏容错能力,一个小的错误就可 能导致整个系统的失败

强化学习方法:构建策略网络或奖励模型,需要大量样本 进行训练,但是收集数据往往成本很高,所以这种方法可 行性不大,很难推广开来

LLM大模型出来之后

LLM大模型:LLM大语言模型在逻辑推理、工具应用、策 略规划、指令遵循等方面都有非常不错的表现,工程师们 开始意识到,将大语言模型作为Agent应用的核心认知系 统,可以极大的提高Agent的规划能力

从人与AI互动的角度考虑

  • Embedding模式:人类完成大多数工作,AI只是作为某些单点能力,嵌入在人类完成工作的某些节点
  • Copilot模式:AI作为人类的坚实助手,随时辅助人类的工作,比如Notion AI、微软Copilot
  • Agent模式:人类只是提出任务和目标,然后由AI自主完成大多数工作

5、AI Agent的优势和局限

优势:

  • 以任务为导向:脱离了传统Chatbot闲聊的交互模式,自动进行后续的推理和行动,可以大幅提升工作效率。
  • 自然的交互方式:由于AI Agent本身以LLM大语言模型为底座,固有的语言理解和语言生成能力,确保了自然无缝的用户交互。
  • 进化的决策能力:虽然目前LLM大模型的决策能力还远远不如人类,但这项能力在持续不断的进化。
  • 灵活的适应性:在RAG和Function Calling等技术的支撑下,AIAgent可以快速适应各种不同的行业和应用场景

局限:

  • 可靠性不足:LLM大模型容易出现幻觉和不一致性,将多个步骤连起来会进一步加剧可靠性问题,从而难以获得用户信任,这会大大限制AI Agent在一些Critical场景下的应用。
  • 法律问题:对于企业对外输出的AI Agent,企业可能要对其产生的错误负责。比如,最近一位客户因为被加拿大航空公司的聊天机器人误导而延误航班,最终由加拿大航空予以赔偿。
  • 性能和成本:GPT-4、Gemini-1.5在推理和function calling的表现不错,但仍然较慢且成本高,特别是需要进行循环调用和自动重试时

6、AI Agent对企业和个人的意义

未来可能只有两种人,驱动AI Agent的人,和被AI Agent驱动的人

  1. 企业用户通常面临更加复杂的业务需求,有更明确的业务场景、业务逻辑以及更多行业数据和行业知识的积累,非常适配 Agent 自主性、决策与执行、工具使用等特点,这让企业端领域成为 Agent 施展能力的绝佳舞台。
  2. AI Agent可以用工程化的思想对抗个体工作的不确定性,过往的SOP、PDCA、OKR等管理方法可以与AI Agent进行适配,完成管理工作的科学升级。
  3. 个人作为企业端的工作者,AI Agent对个人在工作效率上带来的提升,也是显而易见的。利用AI Agent武装自己,让工作和学习效率更上一级台阶。

7、AI Agent的主要应用类型

1. 企业知识助手在企业应用中,通过“外挂”私有知识库来扩充大模型的知识储备,以提供基于自然语言的、对话式的企业私有知识访问

2. 数据分析助手在企业应用中通过将自然语言转换成数据分析的语言或代码,比如对API的调用、对数据库的访问、甚至编写数据分析代码,来达到获取数据、分析数据与可视化结果的目的。

3. 应用/工具助手把自然语言转换成对企业应用或者互联网开放API调用,比如财务分析、市场研究、信息检索等等4. 自定义流程助手由于企业知识、应用、业务需求的千差万别,以及大模型自身的不确定性,Agents项目要强调可控性的原因,来让AI按照人类确认过的工作流程来完成任务。


说真的,这两年看着身边一个个搞Java、C++、前端、数据、架构的开始卷大模型,挺唏嘘的。大家最开始都是写接口、搞Spring Boot、连数据库、配Redis,稳稳当当过日子。

结果GPT、DeepSeek火了之后,整条线上的人都开始有点慌了,大家都在想:“我是不是要学大模型,不然这饭碗还能保多久?”

我先给出最直接的答案:一定要把现有的技术和大模型结合起来,而不是抛弃你们现有技术!掌握AI能力的Java工程师比纯Java岗要吃香的多。

即使现在裁员、降薪、团队解散的比比皆是……但后续的趋势一定是AI应用落地!大模型方向才是实现职业升级、提升薪资待遇的绝佳机遇!

这绝非空谈。数据说话

2025年的最后一个月,脉脉高聘发布了《2025年度人才迁徙报告》,披露了2025年前10个月的招聘市场现状。

AI领域的人才需求呈现出极为迫切的“井喷”态势

2025年前10个月,新发AI岗位量同比增长543%,9月单月同比增幅超11倍。同时,在薪资方面,AI领域也显著领先。其中,月薪排名前20的高薪岗位平均月薪均超过6万元,而这些席位大部分被AI研发岗占据。

与此相对应,市场为AI人才支付了显著的溢价:算法工程师中,专攻AIGC方向的岗位平均薪资较普通算法工程师高出近18%;产品经理岗位中,AI方向的产品经理薪资也领先约20%。

当你意识到“技术+AI”是个人突围的最佳路径时,整个就业市场的数据也印证了同一个事实:AI大模型正成为高薪机会的最大源头。

最后

我在一线科技企业深耕十二载,见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事,早已在效率与薪资上形成代际优势,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。

我整理出这套 AI 大模型突围资料包【允许白嫖】:

  • ✅从入门到精通的全套视频教程

  • ✅AI大模型学习路线图(0基础到项目实战仅需90天)

  • ✅大模型书籍与技术文档PDF

  • ✅各大厂大模型面试题目详解

  • ✅640套AI大模型报告合集

  • ✅大模型入门实战训练

这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

①从入门到精通的全套视频教程

包含提示词工程、RAG、Agent等技术点

② AI大模型学习路线图(0基础到项目实战仅需90天)

全过程AI大模型学习路线

③学习电子书籍和技术文档

市面上的大模型书籍确实太多了,这些是我精选出来的

④各大厂大模型面试题目详解

⑤640套AI大模型报告合集

⑥大模型入门实战训练

👉获取方式:
有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1125024.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2026年AI大模型转行秘籍大公开!程序员必备,免费学习资源助你轻松上手AI大模型!

就在前段时间的两会上,“人工智能”再次被提及,并成为国家战略的焦点。这一举措预示着在接下来的十年到十五年里,人工智能将获得巨大的发展红利。同时意味着,技术革命正在从互联网向人工智能逐步迈进,我们将迎来新一轮…

wps疑难报错问题的简单解决(拒绝废话)

我的wps最近突然莫名其妙所有文档都打不开,我在网上搜索了许多方法,尝试了几个小时。 包括重启、更改防火墙、用配置工具刷新配置、更改任务管理器权限、在cmd里输入各种命令、更改各种系统设置等等。这些都没有帮我解决问题。最后我的解决办法&#xff…

重构现实的计算方式——空间视频智能引擎在能源与高危工业体系中的安全价值说明

重构现实的计算方式——空间视频智能引擎在能源与高危工业体系中的安全价值说明一、能源与高危工业正在进入“零容错运行区间”在核电、化工园区、油气储运等场景中,安全的定义已经发生根本变化:一次失误 系统性事故一次判断偏差 不可逆损失一次信息缺…

**手机剧本杀制作工具推荐2025指南,零基础也能打造沉浸式

手机剧本杀制作工具推荐2025指南,零基础也能打造沉浸式体验据《2025中国沉浸式娱乐产业发展报告》显示,2025年剧本杀线上创作工具用户规模预计突破800万,但其中能提供“从灵感到完整剧本”全流程辅助的工具占比不足15%。与此同时,…

——空间视频智能引擎在核安全体系中的底座级价值说明

——空间视频智能引擎在核安全体系中的底座级价值说明1. 核电安全进入“行为零容错”阶段在核电体系中,安全已不仅是设备可靠性或制度完备性问题,而是一个高度耦合的人—设备—流程—环境系统。 实践中反复出现的风险表明:人员资质合规设备状…

**AI剧本杀写作工具评测2025指南,解锁沉浸式创作新范式

AI剧本杀写作工具评测2025指南,解锁沉浸式创作新范式 据《2025中国沉浸式娱乐产业白皮书》显示,2025年剧本杀市场规模预计突破280亿元,但优质原创剧本的供给缺口高达65%。与此同时,剧本杀作者普遍面临“核心诡计构思耗时、人物剧本…

《山东科士达YDC3320-RT UPS型号详解:20KVA单机大功率机型安装与维护》

山东科士达YDC3320-RT UPS型号详解:20KVA单机大功率机型安装与维护在数据中心、大型制造产线或关键医疗设施中,电力供应的连续性与稳定性是保障业务不间断的生命线。作为科士达(KSTAR)电源家族中的中坚力量,YDC3320-RT…

VisionPro二开之相机传图到ToolBlock

VisionPro二开之相机传图到ToolBlock//采集图像// 获取采集状态myAcqFifo.GetFifoState(out var numPending, out var numReady, out var busy);if (numPending 0 && !busy){// 软触发取图myAcqFifo.StartAcquire();ICogImage cogImage myAcqFifo.CompleteAcquireEx(…

YHM4005CSST看门狗芯片

YHM4005CSST 是上海爻火微电子推出的带单线通信功能的看门狗芯片,核心用于监测主控设备的程序运行状态,避免 “死机”,具体信息如下: 一、芯片核心特性 功能:兼具看门狗复位+单线通信配置能力,支持超时周期可配置(通过单线通信调整)。 供电:宽电压 2.5V~5.5V,兼容 3…

2026款网页版AI Chat对话|Vite7+Vue3+DeepSeek-R1纯手搓web版流式ai聊天系统

最新原创vite7.2集成deepseek-v3.2聊天大模型搭建本地网页版Ai对话。 deepseek-vue3-webai:运用vite7.2vue3.5arco-design集成deepseek-v3.2打造网页版ai系统。提供浅色/暗黑两种主题、深度思考R1、代码高亮/复制、Latex数学公式、Mermaid图表渲染。 技术栈 编辑器…

调制阳极脉冲调制器

调制阳极脉冲调制器 工作原理 工作原理我们分分这么几步走,第一步就是A叫休止期。大家想想休止期的时候,就是说那个触发脉冲的没来,前后沿都没来。没来的时候我们说V一和V二这两个管子都怎么样,是不是都截止,V1V2都截止。你先看看,V一和V2如果都截止,大家现在看书上那个…

单线通信概述

单线通信的原理是什么? 单线通信的核心原理是将时钟信号与数据信号集成在同一条物理线路上传输,无需额外的时钟线(如 IC 的 SCL),仅通过一根数据线的电平变化与时序约定,完成主控与从机之间的双向数据交互。 一、核心实现逻辑 电平与时序的双重编码 不同于 IC 的 “时钟…

雷达原理 魏青 使用的是第三版教材 2.5 脉冲调制器

一、刚性开关脉冲调制器 本质是一个视频脉冲放大器。充分考虑在大功率下运用,保证射频发生器的良好波形 18.P18 雷达发射机(六)_原文 2026年01月07日 13:12 发言人 那么三和四这个地方打了两个点,说明这两个点是脉冲变压器的同名端,对不对?所以这点要注意。那么从三再…

小智Pro支持固件在线更新:原理+流程拆解(续)

前文分享了小智AI自定义唤醒词表情包背景图 的基本原理: 小智AI 如何自定义唤醒词背景图:原理流程拆解 远程控制文字唤醒,小智Pro开放API调用,释放小智无限潜力 有朋友好奇: 浏览器生成的assets.bin是如何发送给设…

成立于2020年的拓竹科技,仅用5年时间便登顶全球消费级3D打印市场,成为该赛道的“隐形王者”

成立于2020年的拓竹科技,仅用5年时间便登顶全球消费级3D打印市场,成为该赛道的“隐形王者” 目录成立于2020年的拓竹科技,仅用5年时间便登顶全球消费级3D打印市场,成为该赛道的“隐形王者”(一)核心锚点&am…

具身智能时代,从“白虎”开始:白虎数据集构建通用机器人数据底座

当机器人智能逐步从单一动作执行走向复杂任务协作,行业对通用机器人能力的期待不断提高。相比模型结构本身,能够真实反映多本体、多任务、多场景操作的数据,正在成为制约具身智能发展的关键因素。 在这一背景下,OpenLoong 开源社区…

优质SCI论文的完整框架设计

优质SCI论文的完整框架设计 目录优质SCI论文的完整框架设计一、Title(标题)二、Abstract(摘要)150-250词三、Introduction(引言)六、Discussion(讨论)七、Conclusion(结论…

【AI】AI大模型之流式传输(前后端技术实现)

流式传输技术详解:从概念到实现的全过程 目录 什么是流式传输?流式传输的实现要求流式传输的三个层面适配层与包装层的实现消息类型分类逻辑完整流程示例总结与最佳实践 什么是流式传输? **流式传输(Streaming)**是…

2025.8大众点评(武汉)全品类数据

截至2025年6月,大众点评数据已覆盖全国30重点城市,全品类商户总量超80万。其中:上海(80w)、北京(68w)、成都(88w)为数据量前三城市;品类包含美食、丽人、亲子…

分子动力学模拟-油气界面张力和最小混相压力计算

关键词:页岩油,分子动力学,lammps,gromacs,界面张力,最小混相压力摘要:分子模拟方法在探究纳米尺度下分子间相互作用方面展现出巨大的技术优势。因此,本文采用分子动力学模拟方法&am…