程序员必学:Multi-LoRA让大模型微调更高效(附代码)

本文详细介绍了Multi-LoRA(低秩适配)技术,通过低秩分解原理降低大模型微调的参数量和计算成本。文章从低秩分解的数学原理出发,结合MNIST手写体识别案例,展示了LoRA在模型微调中的应用实践,并分析了其优缺点。Multi-LoRA能够在保持模型性能的同时,显著减少训练资源需求,适用于多场景的大模型部署。

1 、基本原理

1.1 问题与方案

为了让大模型在细分领域要取得更好的效果,会用领域数据进行微调训练,且微调模型时期望用少量的训练步骤完成对权重的更新。微调一个大模型要有匹配的硬件资源和足够的训练时间。对于动辄百亿参数的大模型而言,可能出现如下问题:

  • 硬件资源无法支持起基础模型的训练。如显存不足、算力太低(训练时间过长);
  • 训练不收敛或者效果不佳;
  • 大模型的通用能力可能下降。

既然大模型的全量调参成本高,是否能仅微调部分达到全量微调的效果?这个问题已有不少的研究,如:

  • 适配器(Adapter[3]):一种在模型中插入新层的方式,仅训练插入的适配器;

  • 前缀调优(Prefix Tuning[4]):给Attention KV层中添加一个前缀,并只训练这个附加的前缀参数;类似的还有提示词调优(Prompt Tuning[5]);

  • 局部训练:仅训练Transformer 的 LayerNorm参数[6],或者仅训练 Bias ( BitFit[7]);

  • 低秩适配(LoRA):给模型增加降秩权重,且仅训练该新增的权重;

当然这些方法也可以混合使用[8]。

参数高效迁移学习 (PETL,parameter-efficient transfer learning)

上述迁移学习的方式各有特点,此处不展开讨论,主要聚焦LoRA方法的相关内容。

1.2 低秩分解的原理

LoRA原理涉及的关键知识:任意矩阵都能进行奇异值分解(Singular Value Decomposition,SVD);当矩阵是不满秩矩阵(Rank-deficient Matrix)时,可以用低秩的分解矩阵来代替原矩阵。

具体展开说明。对于一般矩阵通过SVD计算能够得到三个子矩阵,公式如下:

其中,矩阵的秩数满足:

是一个对角矩阵,对角上非零元素个数等于秩数,当W为不满秩矩阵时,

,,

这里举个3x2矩阵分解的例子,如下图所示,将矩阵W进行SVD处理,得到分解矩阵。其中3x2的对角矩阵最后一行必为0,所以可以简化表达;进一步若还存在‘0’的对角元素,可以进一步简化。简化后的分解矩阵乘积依然等于原矩阵。

优势:当矩阵的尺寸(m,n)较大时,分解矩阵的特点是元素个数相比原矩阵的更少,r越小元素越少。比如当r=1,m=n=1000时,原矩阵元素个数为1000,000,分解矩阵元素总数为2001,比值小于0.5%。参数量少带来好处是:计算量少、存储量少。

1.3 低秩分解的代码实践

这里我们通过一个简单的乘法示例来验证分解矩阵的特点。先创建一个非满秩的矩阵W并进行SVD计算,接着建立B、A矩阵,最后定义一个乘加运算,对比原矩阵与分解矩阵的计算差异。

  • step1:创建一个非满秩矩阵
import torch import numpy as np d, k = 10, 10 # 创建一个非满秩矩阵(a rank-deficient matrix) W_rank = 2 W = torch.randn(d,W_rank) @ torch.randn(W_rank,k) W_rank = np.linalg.matrix_rank(W)

打印相关结果:

  • step2:进行SVD分解,构建B、A矩阵。
# 对W进行SVD处理:(W = UxSxV^T) U, S, V = torch.svd(W) # 对于对角矩阵S保留前rank个数据即可,相应的U和V也只要保存前rank行的数据。 U_r = U[:, :W_rank] S_r = torch.diag(S[:W_rank]) V_r = V[:, :W_rank].t() # 定义: B = U_r * S_r;A = V_r B = U_r @ S_r A = V_r

打印相关参数:

  • step3:构建一个线性层,对比计算差异:
# 创建一个线性运算的输入, y = Wx + b bias = torch.randn(d) x = torch.randn(d) # 原始计算 y = Wx + bias y = W @ x + bias # 分解矩阵计算 y' = (B*A)x + bias y_prime = (B @ A) @ x + bias print(f"The result is allclose: {torch.allclose(y, y_prime)}")

可以看到打印输出为True,该例中W的元素个数为100,B和A的元素总数为40。

低秩分解降低了元素总数,且不改变计算结果;如果分解运算为一次运算,则在算量上面也更少。

2、 LoRA

2.1 计算公式

LoRA正是用低秩分解矩阵的特点来降低微调矩阵的元素个数,原矩阵为[9]:

其中

微调时
冻结(不参与训练)、仅微调分解矩阵 A和B ,因为,所以需要训练的参数相比直接训练原矩阵少很多。

2.2 LoRA训练/推理实践

一个数字0~9手写体识别训练场景,数据采用MNIST。训练一个3层的MLP,让其具备数字手写体识别的能力。为了体现LoRA的作用,需要对数据集进行处理,先全量训练,再增加LoRA微调。大致步骤如下:

  • step1:构建主模型并训练,训练数据集去掉数字‘1’;

  • step2:测试主模型的识别能力;

  • step3:创建LoRA层;

  • step4:主模型的参数冻结,用数字‘1’的数据进行微调;

  • step5:测试LoRA模型,观测数据‘1’识别度差异。

构建一个简单的模型:

# 创建一个全连接的网络用于手写体识别: class MLP(nn.Module): def __init__(self, hidden_size_1=1000, hidden_size_2=2000): super(MLP,self).__init__() self.linear1 = nn.Linear(28*28, hidden_size_1) self.linear2 = nn.Linear(hidden_size_1, hidden_size_2) self.linear3 = nn.Linear(hidden_size_2, 10) self.relu = nn.ReLU() def forward(self, img): x = img.view(-1, 28*28) x = self.relu(self.linear1(x)) x = self.relu(self.linear2(x)) x = self.linear3(x) return x net = MLP().to(device)

模型结构

接着定义模型的训练函数、测试函数:

# 训练函数定义: def train(train_loader, net, epochs=5, total_iterations_limit=None): cross_el = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(net.parameters(), lr=0.001) total_iterations = 0 for epoch in range(epochs): net.train() loss_sum = 0 num_iterations = 0 data_iterator = tqdm(train_loader, desc=f'Epoch {epoch+1}') if total_iterations_limit is not None: data_iterator.total = total_iterations_limit for data in data_iterator: num_iterations += 1 total_iterations += 1 x, y = data x = x.to(device) y = y.to(device) optimizer.zero_grad() output = net(x.view(-1, 28*28)) loss = cross_el(output, y) loss_sum += loss.item() avg_loss = loss_sum / num_iterations data_iterator.set_postfix(loss=avg_loss) loss.backward() optimizer.step() if total_iterations_limit is not None and total_iterations >= total_iterations_limit: return # 测试函数定义: def test(model=net): correct = 0 total = 0 wrong_counts = [0 for i in range(10)] with torch.no_grad(): for data in tqdm(test_loader, desc='Testing'): x, y = data x = x.to(device) y = y.to(device) output = model(x.view(-1, 784)) for idx, i in enumerate(output): if torch.argmax(i) == y[idx]: correct +=1 else: wrong_counts[y[idx]] +=1 total +=1 result_str = "" for i in range(len(wrong_counts)): result_str += f'The wrong counts of digit {i}: {wrong_counts[i]}\n' print(f'\nAccuracy: {round(correct/total, 3)}\n{result_str}')
  • step1:构建主模型并训练,训练数据集去掉数字‘1’。
# 下载MNIST手写体数字识别的数据 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 加载手写体数据: mnist_trainset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) # 训练集 train_loader = torch.utils.data.DataLoader(mnist_trainset, batch_size=10, shuffle=True) mnist_testset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) # 测试集 # 去掉数字‘1'的数据,模型对‘1'的识别率存在问题 exclude_indices = torch.tensor([False if x == 1 else True for x in mnist_trainset.targets]) mnist_trainset.data = mnist_trainset.data[exclude_indices] mnist_trainset.targets = mnist_trainset.targets[exclude_indices] # 训练模型:
  • step2:测试主模型的识别能力。
test_loader = torch.utils.data.DataLoader(mnist_testset, batch_size=10, shuffle=True) test()

可以看到,数字‘1’在测试集上表现不佳。

  • step3:创建LoRA层
# 定义LoRA对权重修改: class LoRAParametrization(nn.Module): def __init__(self, features_in, features_out, rank=1, alpha=1, device='cpu'): super().__init__() # 低秩矩阵的定义: self.lora_A = nn.Parameter(torch.zeros((rank,features_out)).to(device)) self.lora_B = nn.Parameter(torch.zeros((features_in, rank)).to(device)) nn.init.normal_(self.lora_A, mean=0, std=1) # 参考论文:https://arxiv.org/pdf/2106.09685 4.1节 设置一个比例系数: self.scale = alpha / rank # LoRA开关: self.enabled = True def forward(self, original_weights): if self.enabled: # Return W + (B*A)*scale return original_weights + torch.matmul(self.lora_B, self.lora_A).view(original_weights.shape) * self.scale else: return original_weights

将LoRA层注册到模型中:

def linear_layer_parameterization(layer, device, rank=1, lora_alpha=1): # LoRA仅修改W,忽略bias修改。 features_in, features_out = layer.weight.shape return LoRAParametrization( features_in, features_out, rank=rank, alpha=lora_alpha, device=device ) # 保存一份原始权重数据,用于后续校验 original_weights = {} for name, param in net.named_parameters(): original_weights[name] = param.clone().detach() # 注册LoRA权重到原始层中: parametrize.register_parametrization( net.linear1, "weight", linear_layer_parameterization(net.linear1, device) ) parametrize.register_parametrization( net.linear2, "weight", linear_layer_parameterization(net.linear2, device) ) parametrize.register_parametrization( net.linear3, "weight", linear_layer_parameterization(net.linear3, device) ) # 定义LoRA开关函数: def enable_disable_lora(enabled=True): for layer in [net.linear1, net.linear2, net.linear3]: layer.parametrizations["weight"][0].enabled = enabled

打印原始参数和添加LoRA参数的对比,LoRA占比仅0.242%。

  • step4:用数字‘1’数据微调;
# 将原始权重冻结: for name, param in net.named_parameters(): if 'lora' not in name: print(f'Freezing non-LoRA parameter {name}') param.requires_grad = False # 过滤数据,仅保留‘1'的数据: mnist_trainset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) exclude_indices = torch.tensor([True if x == 1 else False for x in mnist_trainset.targets]) mnist_trainset.data = mnist_trainset.data[exclude_indices] mnist_trainset.targets = mnist_trainset.targets[exclude_indices] train_loader = torch.utils.data.DataLoader(mnist_trainset, batch_size=10, shuffle=True) # 用数据‘1'训练带有LoRA的模型: train(train_loader, net, epochs=1, total_iterations_limit=100)
  • step5:测试LoRA模型,观测数据‘1’识别度差异。
# 测试有LoRA的情况: enable_disable_lora(enabled=True) test()

打印正确率,找到数字‘1’的错误个数,相比原模型明显降低了。

与原始模型的测试输出的正确率进行一个对比,除了数字‘1’以外其它数字的识别精度均下降。

LoRA特点小结

优点:

  • LoRA采用了横向扩展参数的方式,训练时原模型参数冻结、仅微调扩展参数,扩展参数采用低秩矩阵,保证了较低的参数量。

  • 实践证明了LoRA的有效性,甚至能让小模型微调能达到大模型的水平[10]。

  • LoRA的适配方式能够保证各个垂直领域解耦训练,互不干扰。

不足:

  • 分解矩阵B、A的秩小于原矩阵W,表达能力弱,导致LoRA的效果可能弱于全量微调;
  • 当主模型参数量比较大且r取值不能太小时,LoRA训练成本依然很高。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线科技企业深耕十二载,见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事,早已在效率与薪资上形成代际优势,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。我们整理出这套AI 大模型突围资料包

  • ✅ 从零到一的 AI 学习路径图
  • ✅ 大模型调优实战手册(附医疗/金融等大厂真实案例)
  • ✅ 百度/阿里专家闭门录播课
  • ✅ 大模型当下最新行业报告
  • ✅ 真实大厂面试真题
  • ✅ 2025 最新岗位需求图谱

所有资料 ⚡️ ,朋友们如果有需要《AI大模型入门+进阶学习资源包》下方扫码获取~

① 全套AI大模型应用开发视频教程

(包含提示工程、RAG、LangChain、Agent、模型微调与部署、DeepSeek等技术点)

② 大模型系统化学习路线

作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!

③ 大模型学习书籍&文档

学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。

④ AI大模型最新行业报告

2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

⑤ 大模型项目实战&配套源码

学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。

⑥ 大模型大厂面试真题

面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余

以上资料如何领取?

为什么大家都在学大模型?

最近科技巨头英特尔宣布裁员2万人,传统岗位不断缩减,但AI相关技术岗疯狂扩招,有3-5年经验,大厂薪资就能给到50K*20薪!

不出1年,“有AI项目经验”将成为投递简历的门槛。

风口之下,与其像“温水煮青蛙”一样坐等被行业淘汰,不如先人一步,掌握AI大模型原理+应用技术+项目实操经验,“顺风”翻盘!

这些资料真的有用吗?

这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

以上全套大模型资料如何领取?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1124293.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

动终端在轨道交通中的使用现状:技术融合与服务创新

目录 1. 研究背景与意义 1.1 轨道交通的数字化转型浪潮 1.2 移动终端的多重角色定位 2. 移动终端在乘客服务中的应用现状 2.1 支付方式的革命性变革 2.2 导航与信息服务的智能化升级 2.3 乘车体验的娱乐化与办公化转变 3. 移动终端在运营管理中的应用现状 3.1 5G专网支…

收藏!年底裁员潮下,传统程序员转型大模型的破局指南

这周部门突然传来裁员消息,HRBP接连找了好几位同事谈话,给出N1补偿后要求当周交接离职。不知不觉间,年底裁员好像成了行业里每年例行的“保留节目”。 如今传统开发岗位的“内卷”早已是公开的常态,不仅各大厂商裁员消息频发&…

ESP-IDF组件编译规则

简单来说就是esp-idf的构建系统会自动编译components (名称固定)文件夹下面的CMakeLists.txt,通过CMake将组件放到项目中,优先编译我们创建项目中的components 文件夹下的CMakeList.txt,然后在编译esp-idf架构中的comp…

学长亲荐2026专科生必用TOP10 AI论文写作软件测评

学长亲荐2026专科生必用TOP10 AI论文写作软件测评 2026专科生论文写作工具测评:为何需要一份精准推荐 随着人工智能技术的不断发展,AI论文写作软件逐渐成为高校学生,尤其是专科生群体提升写作效率的重要工具。然而,面对市场上琳琅…

如何在没有 iTunes 的情况下备份 iPhone

我可以在没有 iTunes 的情况下将 iPhone 备份到电脑吗?虽然 iTunes 曾经是备份 iPhone 的主要方法,但它并不是 iOS 用户唯一的备份选项。您可以选择多种方便的替代方案来备份 iPhone,无需使用 iTunes。您可以在这里获得更灵活、更人性化的备份…

智能终端在铁路客运服务中的应用现状与发展策略研究

目录 摘要 一、引言:铁路客运的智能化转型浪潮 1.1 背景与意义 1.2 研究范围与方法 二、智能终端在铁路客运服务中的应用现状 2.1 旅客服务领域的应用深化 (1)全流程无感出行体系 (2)个性化服务推送系统 &…

导师严选10个AI论文写作软件,专科生毕业论文必备!

导师严选10个AI论文写作软件,专科生毕业论文必备! AI工具如何助力论文写作?专科生必看的实用指南 在当前学术写作日益数字化的背景下,AI工具正逐渐成为学生和研究者不可或缺的助手。尤其是对于专科生而言,撰写毕业论文…

基于stm32单片机的地铁售票系统设计(有完整资料)

资料查找方式:特纳斯电子(电子校园网):搜索下面编号即可编号:T3062405M设计简介:本设计是基于STM32的地铁售票系统,主要实现以下功能:1.可通过按键选择票种,不同票种价格…

电脑开关机慢?,混合睡眠命令

文件名:mixed_sleep.bat命令行:rundll32.exe powrprof.dll,SetSuspendState 0,1,0进入控制面板→硬件和声音→电源选项→更改计划设置→更改高级电源设置。在“睡眠”选项中找到“允许混合睡眠”,根据需要选择“启用”或“禁用”。笔记本的睡…

雅思套招小Tips(未完待续)

以下是雅思口语中常见场景的应对思路、精准用词及例句,涵盖高频话题,注重场景全面性和表达准确性:一、家乡(Hometown)常见问题:Where is your hometown?What’s special about your hometown?Do you like…

基于单片机的自动迎宾门的设计

2 基于单片机的自动迎宾门控制系统总体方案设计 2.1 设计的基本思路 (1)在人靠近自动迎宾门(开门或关门)时,安装在门上的热释电红外线感应器在监控范围之内检测到人体的活动,然后由单片机控制电机来开启车门。 (2)当无人接近时,关闭时间为1秒…

2026年最新爆火!9款AI写论文神器实测,知网查重一把过且不留AIGC痕迹

深夜警报! 距离你的论文DDL(截止日期)还有不到72小时?导师的修改意见让你无从下手?知网查重率和AIGC痕迹检测像两座大山压得你喘不过气?别慌!2026届毕业生最后的“救命稻草”已经出现。这篇测评…

基于nb-iot的智能井盖安防与在线监测系统(有完整资料)

资料查找方式:特纳斯电子(电子校园网):搜索下面编号即可编号:T3112405M设计简介:本设计是基于STM32的智能井盖安防与在线监测系统,主要实现以下功能:1.通过温湿度传感器采集温度 2.通…

太具象了,这就是人们一直所说的中原地区!

从地图上看,中原地区位于西安、北京和南京连线所构成的中间区域。 西安距北京直线距离900公里,距南京950公里,南京距北京900公里,几乎构了一个等边三角形。 而中原所在位置,刚好在三个古都连线的中间区域&#xff0c…

想入行网络安全?这篇入门指南,帮你避开90%的坑

网络安全入门全攻略:零基础也能快速上手,建议收藏 网络安全行业人才缺口大,新手可快速入门。建议先建立"安全思维",不必一开始就敲复杂代码。有两个核心方向:合规与安全运维(适合技术敏感度一般…

监控视角工地建筑施工工程车辆检测数据集VOC+YOLO格式8345张10类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):8435标注数量(xml文件个数):8435标注数量(txt文件个数):8435标注类别…

基于ESP8266的四足机器人的设计

第二章 四足机器人的实现原理及硬件设计 2.1 四足机器人的相关技术分析 2.1.1需求分析 本设计要求采用ESP8266串口WiFi模块进行指令编译和接收,要求通信模块与网络模块连接成功,机器人才能接收命令指令,经过MCU处理,再通过PWM Ser…

AI产学研一体化平台:让硬核技术不再“纸上谈兵”

提到AI,很多人想到的是实验室里的论文、复杂的公式,或是企业里“用不上、用不好”的尴尬——高校的前沿技术躺在硬盘里,企业急需的解决方案找不到门路,学生学的AI知识和产业实际脱节。而AI产学研一体化平台,就是解决这…

2026网络安全入门第一天,零基础该看什么书?这篇指南为你指路!

# 网络安全入门第一天,零基础该看什么书?这篇指南为你指路! 网络安全入门第一天,零基础该看什么书?这篇指南为你指路! 各位网络安全的新朋友们,大家好!🌐 如果你对网络…

工厂实施MES系统,需要注意哪些问题?

​在做完一家电子工厂的MES项目并且上线以后,我也终于明白为什么MES系统的集中度很低了。因为每个工厂的情况会非常不同,比如:管理的思路不同,货品的价值有高低,是否有物联网设备?是否需要通过MES控制&…