【必学收藏】位置嵌入(Positional Embedding):Transformer模型理解词序的核心技术

之前我们探讨了 词嵌入(Word Embedding) ,它根据词嵌入矩阵将文本序列转换为数值向量,使得计算机能够理解和处理自然语言。现在,让我们进一步了解位置嵌入(Positional Embedding),这是让 Transformer 模型“知晓”词语顺序的关键。

1. 位置嵌入的作用


想象一下,如果我们只用词嵌入,那么无论一个词出现在句子的开头还是结尾,它的表示都是相同的。然而,在自然语言中,词语的位置往往影响其意义。例如,“苹果”在“我吃了一个苹果”和“苹果公司发布了新产品”这两个句子中的含义截然不同。因此,我们需要一种机制来告诉模型这些信息,这就是位置嵌入的作用。

位置嵌入通过给每个词赋予一个与它在句子中位置相关的独特向量,使得模型不仅能够捕捉到词语的语义,还能理解它们之间的相对顺序,从而更好地建模句子结构和依赖关系。

2. 位置嵌入的原理


为了让模型能够学习到位置信息,最直接的方法是为每个位置分配一个固定的、预定义的向量。在原始的 Transformer 模型中,位置嵌入是由正弦余弦函数组成的,这样设计的原因在于它具有周期性,可以帮助模型处理比训练时更长的序列,同时保持一定的泛化能力。

具体来说,对于模型维度 *d*、位置 *pos*和维度 *i*,位置嵌入 *PE(pos, 2i)*(偶数维)和 *PE(pos, 2i+1)*(奇数维)分别由以下公式计算:

下面是位置嵌入计算的 Python 代码实现:

importtorchimporttorch.nnasnnimportmath classPositionalEncoding(nn.Module):def__init__(self,d_model,max_len=5000):super(PositionalEncoding,self).__init__()# 创建一个位置编码矩阵 [max_len, d_model]pe=torch.zeros(max_len,d_model)position=torch.arange(0,max_len,dtype=torch.float).unsqueeze(1)# [max_len, 1]div_term=torch.exp(torch.arange(0,d_model,2).float()*(-math.log(10000.0)/d_model))# [d_model/2]pe[:,0::2]=torch.sin(position*div_term)# 偶数维pe[:,1::2]=torch.cos(position*div_term)# 奇数维pe=pe.unsqueeze(0)# [1, max_len, d_model]self.register_buffer('pe',pe)# 不作为模型参数更新defforward(self, x):seq_len=x.size(1)x=x+self.pe[:,:seq_len,:]returnx

这段代码创建了一个PositionalEncoding类,用于生成位置嵌入,并将其添加到输入的词嵌入上。d_model是模型的维度,而max_len则是可以处理的最大序列长度。

3. 词嵌入和位置嵌入的作用


为了更好地理解词嵌入和位置嵌入是如何协作的,我们以一句简单的英语句子为例:“The cat sat on the mat.”。首先,我们会将每个词转换成对应的词嵌入向量;然后,为每个词添加与其位置相关的位置嵌入;最后,我们将两者相加,得到最终的隐藏层输入向量。

特别注意:

  • 为了方便演示,老牛同学此处简化为2 维,实际预训练模型的隐藏层远不止 2 维(如:Qwen2.5 有 1536 维)。
  • 同时,我们把 Token 简化为单词,实际使用的分词算法,如BPE 分词算法,Token 可能并不一定与单词相同。

步骤一:词嵌入

首先,我们需要将句子中的每个词转换为词嵌入,假设我们得到了如下简化版的词嵌入向量(实际预训练模型的维度远高于此):

W{The} = [0.1, 0.2] W{cat} = [0.3, 0.4] W{sat} = [0.5, 0.6] W{on} = [0.7, 0.8] W{the} = [0.9, 1.0] W{mat} = [1.1, 1.2]

步骤二:位置嵌入

接下来,我们需要为每个词添加位置嵌入。我们可以根据上述公式计算出每个位置的嵌入向量。假设我们得到了如下位置嵌入向量(同样简化为2 维):

P_0 = [0.0, 1.0] P_1 = [0.8, 0.6] P_2 = [0.5, 0.8] P_3 = [0.2, 0.9] P_4 = [0.9, 0.4] P_5 = [0.7, 0.2]

步骤三:词嵌入 + 位置嵌入

现在,我们将词嵌入和位置嵌入相加,得到最终的输入向量。这一步操作使得每个词的表示不仅包含了其语义信息,还包含了它在句子中的位置信息。具体来说,我们有:

X{The} = W{The} + P_0 = [0.1, 0.2] + [0.0, 1.0] = [0.1, 1.2] X{cat} = W{cat} + P_1 = [0.3, 0.4] + [0.8, 0.6] = [1.1, 1.0] X{sat} = W{sat} + P_2 = [0.5, 0.6] + [0.5, 0.8] = [1.0, 1.4] X{on} = W{on} + P_3 = [0.7, 0.8] + [0.2, 0.9] = [0.9, 1.7] X{the} = W{the} + P_4 = [0.9, 1.0] + [0.9, 0.4] = [1.8, 1.4] X{mat} = W{mat} + P_5 = [1.1, 1.2] + [0.7, 0.2] = [1.8, 1.4]

词嵌入+位置嵌入

步骤四:隐藏层的输入

最终,这些带有位置信息的词嵌入向量XThe,Xcat,Xsat,Xon,Xthe,Xmat将作为 Transformer 模型的隐藏层的输入。通过这种方式,模型不仅能够理解每个词的语义,还能捕捉到它们在句子中的相对位置,从而更好地建模句子的结构和依赖关系。

  1. 总结

位置嵌入是现代 NLP 模型中不可或缺的一部分,它使得模型能够理解词语的顺序,进而提升对文本的理解能力。通过引入位置嵌入,Transformer 架构克服了传统自注意力机制对词序“不可知”的局限,为各种自然语言处理任务提供了强有力的支持。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过30%。

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

大模型全套学习资料展示

自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!

01教学内容

  • 从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!

  • 大量真实项目案例:带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

02适学人群

应届毕业生‌:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

vx扫描下方二维码即可

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!

03入门到进阶学习路线图

大模型学习路线图,整体分为5个大的阶段:

04视频和书籍PDF合集

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)

05行业报告+白皮书合集

收集70+报告与白皮书,了解行业最新动态!

0690+份面试题/经验

AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)

07 deepseek部署包+技巧大全

由于篇幅有限

只展示部分资料

并且还在持续更新中…

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1123528.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MCP架构设计常见陷阱:90%工程师都会忽略的5个关键问题

第一章:MCP架构设计常见陷阱概述在构建现代云原生系统时,MCP(Management Control Plane)架构扮演着核心调度与协调角色。然而,许多团队在设计初期忽视关键问题,导致系统可维护性下降、扩展困难甚至出现严重…

本科论文写作的“智慧外脑”:解锁书匠策AI的四大隐藏技能

在本科学习的最后阶段,论文写作常常成为横亘在学子面前的一道“关卡”。从选题迷茫到逻辑混乱,从语言表述的“口语化”到格式调整的繁琐,每一步都可能让人陷入焦虑。然而,随着人工智能技术的深度渗透,一款名为书匠策AI…

专业电气设计plc仓库系统设计方案

PLC仓库系统设计方案系统需求分析明确仓库管理的核心需求,包括库存管理、货物搬运、自动化分拣、数据采集和系统监控。确定PLC控制对象,如传送带、堆垛机、AGV小车、传感器等。硬件选型与配置选择适合的PLC型号(如西门子S7-1200/1500、三菱FX…

零基础学Docker:5分钟用AI创建你的第一个镜像

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 请为完全不懂Docker的新手生成一个最简单的静态网站Nginx镜像:1) 使用官方nginx镜像 2) 将本地html/css/js文件复制到容器 3) 暴露80端口 4) 包含如何构建和运行的基本…

从入门到精通:收藏这份Anthropic构建高效AI智能体的完整指南,三层解决方案助你少走弯路!

本文介绍 Claude 模型的研发公司 Anthropic 的一篇博文(https://www.anthropic.com/engineering/building-effective-agents)。在该文章,Anthropic 分享从客户合作及自身构建智能体过程中积累的经验,并为开发者提供构建高效智能体…

揭秘AI识图黑科技:如何用预置镜像快速复现顶级识别模型

揭秘AI识图黑科技:如何用预置镜像快速复现顶级识别模型 物体检测是计算机视觉领域的核心技术之一,能够精准定位并识别图像中的各类物体。对于研究人员而言,复现顶级论文的检测模型是验证算法效果的关键步骤,但本地机器性能不足、…

如何将阿里万物识别模型集成到自有项目中

如何将阿里万物识别模型集成到自有项目中 万物识别-中文-通用领域:技术背景与应用价值 在当前AI视觉识别快速发展的背景下,细粒度图像分类已成为智能内容理解、自动化审核、商品识别等场景的核心能力。阿里巴巴推出的“万物识别-中文-通用领域”模型&…

FURION框架:AI如何革新.NET开发体验

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 使用FURION框架开发一个智能任务管理系统,包含用户认证、任务分配、进度跟踪和自动报告生成功能。系统应支持多角色权限管理,集成AI辅助代码生成和错误检测…

揭秘MCP平台下的云原生转型之路:如何3个月内完成传统应用现代化升级

第一章:MCP云原生应用开发概述在当今快速演进的软件架构体系中,MCP(Microservices, Cloud-native, Platform-as-a-Service)已成为构建高可用、可扩展和易维护应用的核心范式。该模式融合微服务架构、容器化部署与平台级服务能力&a…

铠大师AI vs 传统开发:效率提升对比

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 设计一个任务管理应用,分别使用传统开发方式和铠大师AI工具完成。比较两者的开发时间、代码行数和功能实现效果。应用功能应包括任务创建、分配、进度跟踪和报表生成。…

婚礼摄影辅助:精彩瞬间AI自动抓拍系统

婚礼摄影辅助:精彩瞬间AI自动抓拍系统 引言:让AI捕捉人生最重要的时刻 在婚礼现场,摄影师常常面临巨大的挑战——既要兼顾全局布景,又要不错过每一个感人至深的瞬间:新娘落泪、新郎哽咽、亲友欢笑、孩童嬉闹……这些转…

LabelImg自动保存:定时备份万物识别标注进度

LabelImg自动保存:定时备份万物识别标注进度 万物识别-中文-通用领域 在当前AI驱动的智能视觉应用中,万物识别(Universal Object Recognition) 正成为构建多场景感知系统的核心能力。尤其在中文语境下的通用领域图像理解任务中&am…

仅限内部分享:大型机构绝不会公开的MCP加密密钥管理策略

第一章:MCP数据加密方法概述在现代信息传输与存储系统中,MCP(Message Confidentiality Protocol)数据加密方法被广泛应用于保障敏感数据的机密性。该方法结合对称与非对称加密技术,提供高效且安全的数据保护机制&#…

低成本高效率!Hunyuan-MT-7B-WEBUI适合中小企业国际化落地

低成本高效率!Hunyuan-MT-7B-WEBUI适合中小企业国际化落地 在全球化浪潮不断推进的今天,语言不再是简单的沟通工具,而是企业出海、跨文化服务和内容本地化的关键基础设施。尤其是对资源有限的中小企业而言,如何在不依赖庞大AI团队…

Hunyuan-MT-7B能否部署在树莓派上?边缘计算尝试

Hunyuan-MT-7B能否部署在树莓派上?边缘计算尝试从一个现实问题开始:没有网络,还能做AI翻译吗? 设想这样一个场景:一位支教老师走进西藏偏远山村的教室,手里拿着一台小小的树莓派,连上投影仪和键…

为什么你的MCP系统总出现通信中断?:根源竟是IP地址冲突!

第一章:MCP IP 冲突 检测 工具 在现代数据中心网络环境中,MCP(Management Control Plane)系统的稳定性至关重要。IP 地址冲突可能导致管理网络中断,进而影响设备远程控制与监控能力。为保障网络可靠性,部署…

揭秘量化交易:为什么“趋势跟踪”是散户的最佳选择?

引言: The Rise of the Machines量化交易已不再是投资圈的遥远概念,它正迅速成为市场的主导力量,越来越多地占据市场龙头席位。尽管与欧美市场相比,量化交易在国内的普及率还有差距,但它无疑是未来的大势所趋。对于普通的散户投资…

Hunyuan-MT-7B与低代码平台如Dify集成可视化操作

Hunyuan-MT-7B与低代码平台集成的可视化实践 在企业全球化步伐加快、多语言内容需求爆发式增长的今天,机器翻译早已不再是实验室里的技术玩具,而是支撑国际业务运转的关键基础设施。无论是跨境电商的商品描述、跨国企业的内部沟通,还是少数民…

BeautifulSoup爬取网页数据:从安装到实战提取全指南

在实际的数据采集工作中,BeautifulSoup是一个被广泛使用的Python库,它能够高效地解析HTML和XML文档,从而帮助我们从网页中提取出所需的结构化数据。对于需要处理网络信息的开发者或数据分析师而言,掌握BeautifulSoup是提升工作效率…

树莓派部署实验:超低功耗设备上的运行效果

树莓派部署实验:超低功耗设备上的运行效果 引言:在边缘端实现中文万物识别的可行性探索 随着AI模型轻量化技术的不断进步,将视觉识别能力部署到树莓派这类超低功耗边缘设备上已成为现实。本次实验聚焦于阿里云开源的「万物识别-中文-通用领域…