【无线传感器】基于matlab遗传算法GA无线传感器网络中聚类以增强网络寿命【含Matlab源码 14848期】

💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式

⛳️座右铭:行百里者,半于九十。
更多Matlab信号处理仿真内容点击👇
①Matlab信号处理 (进阶版)
②付费专栏Matlab信号处理(初级版)

⛳️关注CSDN海神之光,更多资源等你来!!

⛄一、遗传算法GA无线传感器网络中聚类以增强网络寿命

1 遗传算法在无线传感器网络聚类中的应用

无线传感器网络(WSN)中,聚类是一种有效的能量管理策略,通过将传感器节点分组为簇,由簇头节点负责数据聚合和传输,从而减少整体能耗。遗传算法(GA)作为一种优化工具,可以用于优化聚类过程,延长网络寿命。

2 遗传算法的基本流程

初始化种群:随机生成一组候选解(聚类方案),每个解代表一种可能的簇头选择和簇分配方式。

适应度函数设计:定义适应度函数以评估聚类方案的质量。常见的适应度函数包括:

  • 能量消耗:最小化簇内和簇间的通信能耗。
  • 负载均衡:确保各簇头节点的负载均衡。
  • 网络寿命:最大化网络存活时间。

选择操作:根据适应度值选择优秀的个体进入下一代。常用的选择方法包括轮盘赌选择、锦标赛选择等。

交叉操作:通过交叉操作生成新的个体。例如,交换两个个体的部分簇头选择或簇分配信息。

变异操作:对个体进行随机扰动,例如随机改变某个簇头的选择或调整簇的分配。

终止条件:当达到最大迭代次数或适应度值收敛时,算法终止。

3 适应度函数设计示例

适应度函数可以结合能量消耗和负载均衡因素:

[
\text{Fitness} = \alpha \cdot \frac{1}{E_{\text{total}}} + \beta \cdot \text{LoadBalance}
]

其中:

  • ( E_{\text{total}} ) 是网络总能量消耗。
  • ( \text{LoadBalance} ) 是负载均衡因子,通常为簇头节点负载的方差倒数。
  • ( \alpha ) 和 ( \beta ) 是权重系数。

4 簇头选择优化

遗传算法可以优化簇头选择,考虑以下约束:

  • 能量阈值:选择剩余能量较高的节点作为簇头。
  • 距离约束:确保簇头与成员节点的距离在通信范围内。
  • 密度约束:避免簇头过于密集或稀疏。

5 实现伪代码示例

defgenetic_algorithm_for_clustering(WSN,max_generations):population=initialize_population(WSN)forgenerationinrange(max_generations):fitness=evaluate_fitness(population)parents=select_parents(population,fitness)offspring=crossover(parents)offspring=mutate(offspring)population=replace_population(population,offspring)returnbest_solution(population)

6 性能评估指标

网络寿命的评估通常包括:

  • 第一个节点死亡时间(FND):反映网络的初始稳定性。
  • 半数节点死亡时间(HND):反映网络的整体稳定性。
  • 最后一个节点死亡时间(LND):反映网络的最终寿命。

7 实际应用中的改进

多目标优化:将网络寿命、能量效率和覆盖范围等多目标纳入适应度函数。

动态聚类:在动态环境中,遗传算法可以定期重新运行以适应节点能量变化或拓扑变化。

混合算法:结合其他优化算法(如粒子群优化PSO)以提升收敛速度和解决方案质量。

⛄二、部分源代码和运行步骤

1 部分代码

2 运行步骤
(1)直接运行main即可一键出图。

⛄三、运行结果




⛄四、matlab版本及参考文献

1 matlab版本
2019b

2 参考文献
[1]郑岚;徐丽萍.基于遗传感知优化算法的无线传感网络资源分配研究[J].新乡学院学报. 2023

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1119672.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解析 ‘Progressive Revelation’:如何在图执行过程中,分阶段向用户展示 Agent 的思考进度?

尊敬的各位同仁、技术爱好者们: 大家好! 今天,我们聚焦一个在构建智能体(Agent)系统时至关重要,却又常被忽视的议题——渐进式揭示(Progressive Revelation)。特别是在复杂的图执行…

直接上干货!这个通信信号调制识别数据集生成工具能让你摆脱数据荒,咱们从核心代码开始拆解。先看信号生成器的核心逻辑

通信信号调制识别所用数据集生成代码 Matlab自动生成数据集,打标签,绘制不同训练策略和不同训练样本数量的对比曲线图,可以绘制模型在测试集上的虚警率,精确率和平均误差。 可以绘制不同信噪比下测试集各个参数的直方图。 注释非常…

深入 ‘Steering the Agent’:利用输入反馈实时改变正在运行中的 Graph 权重,实现‘人机共驾’

尊敬的各位技术同仁,大家好!今天,我们将深入探讨一个激动人心的主题——“Steering the Agent”,特别是如何利用实时输入反馈来动态调整正在运行中的图(Graph)的权重,最终实现真正意义上的“人机…

基于SpringBoot和Vue的公司文档档案借阅管理系统设计与开发应用和研究

文章目录摘要项目简介大数据系统开发流程主要运用技术介绍爬虫核心代码展示结论源码文档获取定制开发/同行可拿货,招校园代理 :文章底部获取博主联系方式!摘要 公司文档档案借阅管理系统基于SpringBoot和Vue技术栈开发,旨在提升企业文档管理…

LangGraph之State的定义

在 LangGraph(LangChain 生态中的一个用于构建状态机和有向无环图工作流的库)中,State(状态) 是整个工作流的核心数据结构。它用于在节点(Node)之间传递信息、维护上下文,并驱动整个…

【后端开发面试高频场景题设计题】深度解析(万字干货)| 面试通关必备

文章目录目录一、 前言:场景题&设计题的面试考察逻辑二、 高频场景题深度解析2.1 缓存三大问题:穿透、击穿、雪崩(面试最高频)问题描述分析思路参考答案面试考察点面试追问2.2 分布式事务的解决方案及适用场景问题描述分析思路…

基于MATLAB Simulink Simscape的倒立摆仿真控制器文档详解

MATLAB倒立摆仿真 simulink simscape 控制器 有文档刚上手倒立摆仿真时总觉得这玩意儿像在钢丝上跳舞——明明物理模型不复杂,但控制器稍微不听话整个系统就翻车。好在MATLAB的SimulinkSimScape组合给咱们配了把瑞士军刀,今天咱们边拆解边实操。先打开Si…

c盘红了怎么清理垃圾而不误删,教您一套安全又效率的清理方法!

“这是怎么回事啊?我的电脑C盘怎么爆满了?我记得自己没往C盘放过东西啊?怎么自己就红了啊?我想自己清理一下C盘,但是又不知道该从哪里入手,害怕删错了东西,那可就完犊子了,有谁知道C…

web自动化测试窗口框架与验证码登录处理

前言 selenium的作用域切换 selenium在处理元素时遇见新窗口、网页嵌套网页、网页的原生弹窗,无法进行直接处理作用域里元素的内容,需要通过切换作用域来处理此类问题。 selenium三种作用域切换: ①、window窗口切换 ②、iframe切换 ③、al…

探秘AI应用架构师的智能营销AI决策系统数据分析能力

探秘AI应用架构师的智能营销AI决策系统数据分析能力 1. 引入与连接:智能营销的变革与数据分析的核心作用 1.1 开场故事:营销困境与AI破局 场景: 2023年,某快消品牌市场总监李明正面临一个典型的营销困境——公司投入了数百万营销预算,却无法准确追踪哪些渠道带来了实际…

编程语言最核心的方面是什么?

编程语言最核心的区分要素及原理 编程语言的核心区别主要体现在以下几个方面,每个方面都有其独特的机制和原理: 一、核心区分要素 1. 编程范式 这是最根本的区别,决定语言如何组织和表达逻辑。 实例对比: # Python(多范…

rdd的持久化

在Apache Spark中,RDD(弹性分布式数据集)的持久化(Persistence)是一种优化技术,用于将RDD的计算结果存储在内存或磁盘中,避免重复计算。以下是关键要点:核心作用避免重复计算&#x…

[Windows] 局域网共享精灵v2025.11.10绿色版

[Windows] 局域网共享精灵v2025.11.10绿色版 链接:https://pan.xunlei.com/s/VOiI2bKifFbU2d-SbBTjWrfPA1?pwdpsbj# 局域网共享精灵是一款Windows环境下助力于局域网环境文件共享和打印机共享,帮助您快捷高效的在局域网内实现文件共享和打印机共享的操作&#xf…

强烈安利!继续教育必用TOP10 AI论文工具测评

强烈安利!继续教育必用TOP10 AI论文工具测评 2026年继续教育AI论文工具测评:为何需要这份权威榜单 在当前学术研究日益数字化的背景下,继续教育群体面临着前所未有的挑战。无论是撰写高质量论文,还是高效完成科研任务,…

介电强度试验仪解决材料在高压环境下的绝缘性能评估问题

介电强度试验仪主要解决材料在高压环境下的绝缘性能评估问题,具体包括以下几个方面:1. ‌评估材料的绝缘性能‌核心功能‌:通过施加直流或交流电压,模拟高压环境,测试材料在电场作用下的击穿电压,从而评估其…

UTS API插件,助力uniapp开发者快速实现人脸识别活体检测

HelloKitty-FaceAIFaceAI人脸识别,活体检测UTS API插件,支持iOS,Android 双端,助力uniapp开发者快速实现人脸识别活体检测。 后面我们会支持主题色定制等功能,更多可根据原生工程项目修改升级插件原生工程:…

【Linux命令大全】003.文档编辑之nl命令(实操篇)

【Linux命令大全】003.文档编辑之nl命令(实操篇) ✨ 本文为Linux系统文档编辑与文本处理命令的全面汇总与深度优化,结合图标、结构化排版与实用技巧,专为高级用户和系统管理员打造。 (关注不迷路哈!!&#…

【Linux命令大全】003.文档编辑之od命令(实操篇)

【Linux命令大全】003.文档编辑之od命令(实操篇) ✨ 本文为Linux系统文档编辑与文本处理命令的全面汇总与深度优化,结合图标、结构化排版与实用技巧,专为高级用户和系统管理员打造。 (关注不迷路哈!!&#…

小迪安全2023-2024|第12天-扩展整理:信息打点-Web应用企业产权指纹识别域名资产网络空间威胁情报_笔记|web安全|渗透测试|网络安全_2023-2024

小迪安全2023-2024|第12天:信息打点-Web应用&企业产权&指纹识别&域名资产&网络空间&威胁情报_笔记|web安全|渗透测试|网络安全_2023-2024 一、信息打点概述 在渗透测试和安全评估中,信息收集是整个…

【用友U8cloud】修改Server和Data Source 访问IP地址

访问路径 C:\U8CloudCERP5.1\U8CERP\bin 运行u8SysConfig配置修改完成后,点击保存 运行启动U8cloud这块启动时间稍微长一些,配置好的电脑可能1-3分钟左右,配置不好的可能更长