【SQLSERVER】 Page life expectancy计数器参数解析

SQL Server 中 SQLServer:Buffer Manager​ 和 SQLServer:Buffer Node​ 这两个对象下有相同计数器 Page life expectancy ,要区分两个对象的参数含义,需从作用范围、架构背景、分析场景三个维度理解:

1. 核心区别:作用范围与架构关联


SQL Server 的性能计数器通过 object_name(对象名)和 instance_name(实例名)来区分“统计范围”:

SQLServer:Buffer Manager​
是 SQL Server 缓冲池的“全局管理器”,统计整个 SQL Server 实例所有缓冲池的聚合指标。
它不区分 NUMA 节点(Non-Uniform Memory Access,非统一内存访问架构),反映的是全局内存压力和缓冲池的整体状态。

SQLServer:Buffer Node​
是 针对 NUMA 节点的缓冲池分区(每个 NUMA 节点对应一个 Buffer Node实例,instance_name如 000、001等标识具体节点)。
NUMA 架构下,SQL Server 会为每个物理 NUMA 节点分配独立的缓冲池,以减少跨节点内存访问的延迟。因此,Buffer Node统计的是单个 NUMA 节点内缓冲池的局部指标。

2. 相同计数器(如 Page life expectancy)的含义差异


以 Page life expectancy(页面生存期预期,单位:秒)为例:

它表示数据页在缓冲池中停留的平均时间(时间越长,说明内存充足,页面被换出的概率低;反之则内存紧张,页面频繁淘汰)。

但不同 object_name下,该指标的聚合层级完全不同:

SQLServer:Buffer Manager的 Page life expectancy→ 全局所有缓冲池页面的“平均生存期”(聚合所有 NUMA 节点的数据)。

SQLServer:Buffer Node的 Page life expectancy→ 单个 NUMA 节点内缓冲池页面的“生存期”(仅反映该节点内的内存状态)。

3. 如何根据场景选择观测对象?


分析场景
选择对象
原因
排查全局内存压力(如整个实例卡慢、内存不足)
SQLServer:Buffer Manager
聚焦“全局聚合值”,快速判断实例级内存是否紧张。
排查特定 NUMA 节点的内存问题(如某节点 CPU 高但内存低、节点间负载不均)
SQLServer:Buffer Node+ 对应 instance_name
拆解到单个 NUMA 节点,定位“局部内存瓶颈”(比如某节点因硬件故障导致内存异常)。
总结
两个对象的核心差异是 “全局聚合” vs “单节点局部”。即使计数器名相同,object_name和 instance_name的组合决定了统计范围,进而影响指标的业务含义。分析时需结合 SQL Server 的 NUMA 架构和性能问题层级(全局/局部)来选择观测对象~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1119284.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python+Vue的美容院管理系统 Pycharm django flask

这里写目录标题项目介绍项目展示详细视频演示技术栈文章下方名片联系我即可~解决的思路开发技术介绍性能/安全/负载方面python语言Django框架介绍技术路线关键代码详细视频演示收藏关注不迷路!!需要的小伙伴可以发链接或者截图给我 项目介绍 传统的美容…

【计算机毕业设计案例】卷神经网络基于python深度学习的砖头墙裂缝识别

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围:&am…

2026想布局大模型推理工程师?一定要看这份核心能力架构图:系统掌握7大技术维度与高阶拓展方向(含实战解析)

大模型推理工程师的工作核心是推动大模型从实验室走向产业应用,既要扎根技术理论,又要深耕工程实践,是一个兼具专业深度与技术广度的复合型岗位。以下从核心能力与拓展维度,解析该岗位所需的关键素养: 一、核心编程语…

艾体宝案例 | 从关系到语义:ArangoDB如何支撑高精度水军识别

数字社交生态的繁荣,伴随着用户生成内容的爆炸式增长,也让水军乱象成为平台治理的顽疾。水军账号通过批量操作制造虚假热度、扩散不实信息,不仅扭曲正常信息传播秩序,还会侵蚀平台公信力、损害用户的真实体验。在应对这一挑战时&a…

2026都到了!为什么说AI产品经理是未来5年最值得all in的岗位?

如果你要问我:未来5年,什么岗位最有“钱”景、最值得all in? 我的答案只有一个——AI产品经理。 这不是我瞎说。过去一年,我跟超过200位职场人聊过这个话题。我发现,几乎所有想抓住AI机会的人,都卡在了这3种…

大模型技术体系全攻略:AIGC(单/多模态)、RAG技术、Function Calling、智能体Agent及MCP协议!

简介 文章系统介绍了大模型技术体系,包括AIGC(单/多模态)、RAG技术、Function Calling、智能体Agent及MCP协议。AIGC解决内容生成,RAG增强实时信息获取,Function Calling赋予工具调用能力,Agent实现任务闭环,MCP提供统…

【课程设计/毕业设计】基于深度学习的砖头墙裂缝识别

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围:&am…

PostIn速成手册(11) - 使用自动化接口测试全方位确保接口质量

PostIn是一款开源免费的接口管理工具,支持免费私有化部署,一键安装零配置,页面设计简洁易用。本文将介绍如何编写接口用例并进行全面测试。1、接口用例PostIn支持如下几种测试用例。接口单元用例:针对单个接口的输入输出进行验证&…

从入门到落地:MindSpore实战指南与经验总结

MindSpore是华为自研全场景AI框架,覆盖开发、训练、部署全链路,适配多领域需求,助力新手入门与资深开发者落地项目。本文精简提炼入门准备、核心实操、模型部署、性能优化、问题排查五大模块的实战要点,帮助开发者快速上手、少走弯…

最新版最详细Anaconda新手安装+配置+环境创建教程

Anaconda 新手安装 配置 环境创建教程(最新版,基于 2026 年信息) Anaconda 是一个开源的 Python 和 R 发行版,专为数据科学、机器学习和科学计算设计。它包含了 conda 包管理器、数百个预装包(如 NumPy、Pandas、Ma…

【数据分享】全国村级行政区矢量(免费/无套路分享)

行政区划边界矢量数据是我们在各项研究中最常用的数据。本次我们为大家带来的是我国分省的行政村(社区)的行政区划矢量数据!数据格式为Shp,每一个省份的行政村(社区)行政区划数据保存为一个shp文件。数据范…

大模型应用开发者的核心必修课:深入拆解提示词工程的技术原理、评估体系与优化框架

“ 提示词工程是用户与大模型交流的桥梁,提示词的好坏直接影响到模型的效果。” 在大模型应用开发中,所有的操作最终的结果都是拼接成提示词输入给大模型,因此可以说提示词是大模型应用的核心。 因此,而诞生了一项叫做提示词工程的…

MindSpore开发之路:训练可视化:使用MindInsight洞察模型行为

模型的网络结构真的如我所想的那样搭建的吗?Loss曲线的详细变化趋势是怎样的?是否存在剧烈震荡?模型中每一层权重参数在训练过程中的分布和变化情况如何?是否存在梯度消失或梯度爆炸的迹象? 要回答这些问题&#xff0…

深度学习毕设项目推荐-基于python深度学习的砖头墙裂缝识别卷神经网络

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围:&am…

HTTP报文详解

HTTP 报文详解 HTTP(Hypertext Transfer Protocol,超文本传输协议)是 Web 通信的基础协议,用于客户端(如浏览器)和服务器之间交换数据。HTTP 报文 是 HTTP 协议交互的信息载体,分为两种类型&am…

MindSpore开发之路:静态图 vs. 动态图:掌握MindSpore的两种执行模式

在使用MindSpore的过程中,我们几乎在每个脚本的开头都会写下一行代码:context.set_context(mode...)。这行代码的作用是设置MindSpore的执行模式。这是一个非常核心的设置,它从根本上决定了你的代码是如何被框架解释和执行的,直接…

Attention机制完全揭秘:轻松解决长文本处理难题!

简介 文章首先介绍了Attention机制如何解决RNN处理长序列的瓶颈问题,详细解释了其实现原理、不同类型(Soft/Hard,Global/Local)及代码实现。同时提供了AI大模型的完整学习路径,从系统设计到微调开发七个阶段&#xff0…

AI工厂生产安全隐患识别及预警系统:重构工厂隐患识别与预警新范式

传统工厂安全管理常陷“人盯不过来、隐患藏得深、响应跟不上”的困境,而AI工厂生产安全隐患识别及预警系统,就像为工厂装上“智慧大脑千里眼”,通过技术赋能实现从“被动应对”到“主动预防”的跨越。这套系统并非单一设备堆砌,而…

JavaScript返回到上一页的三种方法

JavaScript 返回到上一页的三种常用方法 在网页开发中,实现“返回上一页”功能非常常见。JavaScript 提供了多种方式来实现,下面详细介绍三种最常用且可靠的方法,并附带优缺点对比和使用场景。 方法一:history.back()&#xff0…

艾体宝案例 | ArangoDB赋能电商个性化推荐:精准匹配需求,拓展增长空间

在电商行业竞争日趋激烈的当下,个性化推荐已成为平台提升用户体验、拉动转化增长的重要手段。传统推荐方案往往存在“重行为轻语义”或“重语义轻关联”的局限——要么主要依赖用户历史行为进行匹配,难以有效挖掘潜在需求;要么侧重语义相似度…