基于Python高校学生选课成绩分析系统的设计与实现

目录

    • 已开发项目效果实现截图
    • 关于博主
    • 开发技术路线
    • 相关技术介绍
    • 核心代码参考示例
    • 结论
    • 源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

已开发项目效果实现截图

同行可拿货,招校园代理 ,本人源头供货商

基于Python高校学生选课成绩分析系统的设计与实现






关于博主

本人是专业技术服务,大家都要生活,这个很正常。我和其他人不同的是,我是源头供货商。大家都不容易,我理解同学们的经济压力。我的原则很简单:用最专业的技术、最实惠的价格、最真诚的态度服务大家。无论最终合作与否,咱们都是朋友,能帮的地方我绝不含糊。买卖不成仁义在,这就是我的做人原则。 团队专注于uniapp框架,Android,Kotlin框架,koa框架,express框架,go语言,laravel框架,thinkphp框架,springcloud,django,flask框架,SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发 全网粉丝30W+,累计指导10w+项目,原创技术文章2万+篇,GitHub项目获赞50W+ 核心服务: 专业指导、项目源码开发、技术答疑解惑,用学生视角理解学生需求,提供最贴心的技术帮助。

开发技术路线

开发语言:Python
框架:flask/django
开发软件:PyCharm/vscode
数据库:mysql
数据库工具:Navicat for mysql
前端开发框架:vue.js
数据库 mysql 版本不限
本系统后端语言框架支持: 1 java(SSM/springboot)-idea/eclipse 2.Nodejs+Vue.js -vscode 3.python(flask/django)--pycharm/vscode 4.php(thinkphp/laravel)-hbuilderx

相关技术介绍

Hadoop:Hadoop 是一个分布式计算平台,用于处理大规模数据。在酒店评论情感分析中,它负责存储和处理海量评论数据,支持并行计算,提升数据处理效率,为深度学习模型训练提供强大的数据支持。
决策树算法:决策树是一种经典的机器学习算法,用于情感分类。在酒店评论情感分析中,它通过构建树状模型,根据特征划分情感类别,简单易懂且可解释性强,适用于初步情感分类任务。
协同过滤:协同过滤是一种推荐系统技术,通过分析用户的历史行为和偏好,挖掘用户之间的相似性,为用户推荐可能感兴趣的酒店。在酒店评论情感分析系统中,协同过滤可用于结合情感分析结果,为用户精准推荐高满意度的酒店,提升用户体验和决策效率。

B/S架构(Browser/Server):B/S架构是一种网络体系结构,用户通过浏览器访问服务器上的应用程序。在本系统中,用户通过浏览器访问服务器上的Java Web应用程序。
LSTM算法:LSTM(长短期记忆网络)是一种深度学习算法,特别适合处理序列数据。在酒店评论情感分析中,LSTM能够捕捉文本中的长期依赖关系,精准识别情感倾向,有效提升情感分析的准确性和鲁棒性。
Django框架:Django是一个开放源代码的Web应用框架,采用MTV(Model-Template-View)设计模式。它鼓励快速开发和干净、实用的设计。在本系统中,我们选择Django框架来实现后端逻辑,主要因为它提供了许多自动化功能,如ORM(对象关系映射)、模板引擎、表单处理等。这些功能大大减轻了开发者的工作量,提高了开发效率。Django具有良好的扩展性和安全性,支持多种数据库后端,并且有完善的文档和社区支持。
Python语言:Python是一种广泛使用的高级编程语言,以其简洁易读的语法和强大的功能而闻名。Python拥有丰富的标准库和第三方库,可以满足各种开发需求。在本系统中,我们选择Python作为后端开发语言,主要考虑到其高效性和易用性。Python的动态类型检查和自动内存管理使得开发过程更加顺畅,减少了代码量和出错概率。Python社区活跃,有大量的开源项目和教程可以参考,有助于解决开发中遇到的问题。
MySQL:MySQL是一个广泛使用的开源关系型数据库管理系统,用于存储和管理数据。在本系统中,MySQL被用作数据库,负责存储系统的数据。
Scrapy:Scrapy 是一款高效的网络爬虫框架,用于爬取酒店评论数据。它能够快速定位目标网站,提取评论文本并保存为结构化数据,为情感分析提供丰富的原始素材,确保数据采集的高效性和准确性。
数据清洗:数据清洗是情感分析的重要环节,用于去除酒店评论中的噪声数据,如无关符号、重复内容等。通过清洗,确保输入模型的数据质量,从而提高情感分析的准确性和可靠性。
Vue.js:属于轻量级的前端JavaScript框架,它采用数据驱动的方式构建用户界面。Vue.js的核心库专注于视图层,易于学习和集成,提供了丰富的组件库和工具链,支持单文件组件和热模块替换,极大地提升了开发效率和用户体验。

核心代码参考示例

预测算法代码如下(示例):

defbooksinfoforecast_forecast():importdatetimeifrequest.methodin["POST","GET"]:#get、post请求msg={'code':normal_code,'message':'success'}#获取数据集req_dict=session.get("req_dict")connection=pymysql.connect(**mysql_config)query="SELECT author,type,status,wordcount, monthcount FROM booksinfo"#处理缺失值data=pd.read_sql(query,connection).dropna()id=req_dict.pop('id',None)req_dict.pop('addtime',None)df=to_forecast(data,req_dict,None)#创建数据库连接,将DataFrame 插入数据库connection_string=f"mysql+pymysql://{mysql_config['user']}:{mysql_config['password']}@{mysql_config['host']}:{mysql_config['port']}/{mysql_config['database']}"engine=create_engine(connection_string)try:ifreq_dict:#遍历 DataFrame,并逐行更新数据库withengine.connect()asconnection:forindex,rowindf.iterrows():sql=""" INSERT INTO booksinfoforecast (id ,monthcount ) VALUES (%(id)s ,%(monthcount)s ) ON DUPLICATE KEY UPDATE monthcount = VALUES(monthcount) """connection.execute(sql,{'id':id,'monthcount':row['monthcount']})else:df.to_sql('booksinfoforecast',con=engine,if_exists='append',index=False)print("数据更新成功!")exceptExceptionase:print(f"发生错误:{e}")finally:engine.dispose()# 关闭数据库连接returnjsonify(msg)

结论

本系统还支持springboot/laravel/express/nodejs/thinkphp/flask/django/ssm/springcloud 微服务分布式等框架,同行可拿货,招校园代理
大数据指的就是尽可能的把信息收集统计起来进行分析,来分析你的行为和你周边的人的行为。大数据的核心价值在于存储和分析海量数据,大数据技术的战略意义不在于掌握大量数据信息,而在于专业处理这些有意义的数据。看似大数据是一个很高大上的感觉,和我们普通人的生活相差甚远,但是其实不然!大数据目前已经存在我们生活中的各种角落里了, 数据获取方法
数据集来源外卖推荐的相关数据,通过python中的xpath获取html中的数据。
数据预处理设计 对于爬取数据量不大的内容可以使用CSV库来存储数据,将其存为CSV文件格式,再对数据进行数据预处理,也可通过代码进行数据预处理。
(1)数据获取板块
数据获取板块功能主要是依据分析目的及要达到的目标,确定获取的数据种类,并使用直接获取数据文件方式或爬虫方式获取原始数据。
(2)数据预处理板块
数据预处理板块功能是对获取到的数据进行预处理操作:将重复的字段筛选,将过短并且没有实际意义的数据进行过滤,选择重要字段,标准化处理,异常值处理等预处理操作。
(3)数据存储板块
数据存储板块主要功能是把经过预处理的数据持久化存储,以便于后续分析。
(4)数据分析板块
数据分析板块主要功能是根据分析目标,找出数据中字段之间的内在关系,与规律。
(5)数据可视化板块
数据可视化板块主要功能是使用适当的图标展现方式,把数据的内在关系、规律展现出来。

源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

需要成品或者定制,文章最下方名片联系我即可~ 所有项目都经过测试完善,本系统包修改时间和标题,包安装部署运行调试,不满意的可以定制

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1098996.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

fastjson (1概述)

一、fastjson 是什么?fastjson 是阿里巴巴开发的一款 Java 语言编写的高性能 JSON 解析框架,广泛用于 Java 项目中实现 JSON 和 Java 对象的相互转换。但由于其早期设计的一些特性,导致它成为了安全漏洞的重灾区。二、fastjson 核心漏洞解析1…

Miniconda-Python3.10镜像在碳排放追踪系统中的技术支撑

Miniconda-Python3.10镜像在碳排放追踪系统中的技术支撑 在“双碳”目标成为国家战略的今天,企业与科研机构对碳排放数据的准确性、实时性和可追溯性提出了前所未有的要求。一个典型的挑战是:如何在一个不断演进的技术生态中,确保从实验室原型…

STM32程序在Keil5中的单步调试技巧

深入Keil5调试实战:STM32开发中那些你必须掌握的“单步艺术”在嵌入式世界里,代码写完只是开始。真正决定项目成败的,往往是你面对一个黑盒MCU时——能不能快速定位问题、敢不敢精准下断点、会不会读懂寄存器眼神里的暗示。尤其是使用STM32这…

LTspice批量运行仿真脚本实践:高级用户指南

让LTspice自己干活:一个电源工程师的自动化实战手记最近在做一款宽输入范围的同步Buck转换器,客户要求从3V到12V全范围都要高效率。手动调参数、点仿真、看波形、记数据……试了两天才跑了不到十个工况,眼睛都快瞎了。这哪是设计电源&#xf…

Miniconda镜像内置pip与Conda双工具,灵活安装各类AI框架

Miniconda镜像内置pip与Conda双工具,灵活安装各类AI框架 在人工智能研发日益复杂的今天,一个看似不起眼却至关重要的问题常常困扰开发者:为什么我的代码在别人机器上跑不起来? 答案往往藏在环境配置的细节里——Python版本不一致…

CubeMX配置FreeRTOS完整示例解析

从零开始搭建多任务系统:CubeMX FreeRTOS 实战全解析 你有没有遇到过这样的场景? 主循环里塞满了各种 if-else 检测按键、读传感器、发串口、刷屏幕……改一处,其他功能就出问题;某个操作稍一卡顿,整个系统像“死…

Python安装模块找不到?正确激活Miniconda-Python3.11环境是关键

Python安装模块找不到?正确激活Miniconda-Python3.11环境是关键 在数据科学和AI开发的日常工作中,你是否曾遇到过这样的尴尬:明明刚用 pip install torch 安装了PyTorch,一运行代码却报错 ModuleNotFoundError: No module named t…

使用Miniconda避免Python包冲突,保障大模型训练稳定性

使用 Miniconda 避免 Python 包冲突,保障大模型训练稳定性 在现代人工智能研发中,尤其是大模型训练场景下,环境问题早已不再是“配个 Python 就行”的简单任务。你有没有遇到过这样的情况:昨天还能正常跑通的训练脚本,…

清华源配置教程:将Miniconda-Python3.11的pip安装速度提升5倍

清华源配置教程:将Miniconda-Python3.11的pip安装速度提升5倍 在人工智能项目开发中,最让人抓狂的瞬间之一莫过于——敲下 pip install torch 后,终端卡在“Collecting…”长达十分钟,最后还报错超时。你明明只是想跑一个简单的深…

GitHub项目克隆后如何运行?使用Miniconda-Python3.11快速还原环境

GitHub项目克隆后如何运行?使用Miniconda-Python3.11快速还原环境 在人工智能和数据科学领域,一个常见的场景是:你从 GitHub 上发现了一个令人兴奋的开源项目——也许是最新的视觉模型、语音识别工具或自动化数据分析脚本。你迫不及待地克隆下…

Miniconda-Python3.10镜像支持联邦学习框架的部署

Miniconda-Python3.10镜像支持联邦学习框架的部署 在医疗影像分析、金融风控建模和智能物联网设备协同训练等前沿场景中,一个共同的挑战正日益凸显:如何在不集中原始数据的前提下,实现多方参与的模型联合训练?传统机器学习依赖于将…

Miniconda-Python3.10镜像支持生物信息学序列分析流程

Miniconda-Python3.10镜像支持生物信息学序列分析流程 在高通量测序数据呈指数级增长的今天,一个看似微不足道的依赖版本差异,就可能导致一次耗时数天的RNA-seq分析结果无法复现。这种“环境地狱”问题,在生物信息学领域早已不是个例——你可…

Miniconda-Python3.10镜像中使用diff比较环境差异

Miniconda-Python3.10镜像中使用diff比较环境差异 在AI模型训练的深夜,你是否经历过这样的场景:本地一切正常,但CI流水线突然失败,报错信息是“ImportError: cannot import name ‘xyz’”。翻遍代码无果,最后发现只是…

解决ST7735 SPI通信花屏问题的系统学习

一次点亮,持久稳定:我是如何彻底解决ST7735花屏问题的最近在做一个基于ESP32的小型气象站项目,想用一块1.44英寸的彩色TFT屏来显示温湿度曲线。选的是市面上最常见的ST7735驱动芯片模块,价格便宜、体积小巧,接线也简单…

Linux权限问题导致PyTorch安装失败?解决方案在此(Miniconda-Python3.11)

Linux权限问题导致PyTorch安装失败?解决方案在此(Miniconda-Python3.11) 在高校实验室、企业AI平台甚至个人开发机上,你是否遇到过这样的场景:满怀期待地准备跑一个PyTorch模型,结果刚执行 pip install tor…

基于Python的宁夏事业单位教师招聘考试可视化系统

目录已开发项目效果实现截图关于博主开发技术路线相关技术介绍核心代码参考示例结论源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!已开发项目效果实现截图 同行可拿货,招校园代理 ,本人源头供货商 基于Python的宁夏事业单位教师招聘考…

Miniconda如何帮助用户节省GPU算力成本:环境即服务理念

Miniconda如何帮助用户节省GPU算力成本:环境即服务理念 在AI模型训练的战场上,一个看似微不足道的依赖冲突,可能让数小时的GPU计算付诸东流。你是否经历过这样的场景:刚跑完一轮实验,准备复现结果时却发现某个库被意外…

使用Miniconda管理多个PyTorch版本:应对不同模型兼容性需求

使用Miniconda管理多个PyTorch版本:应对不同模型兼容性需求 在深度学习项目实战中,你是否遇到过这样的场景?一个刚接手的开源模型只支持 PyTorch 1.12,而你的新项目却想用上 PyTorch 2.0 的图优化特性。如果直接升级全局环境&…

为什么说Miniconda是AI开发者最理想的环境管理工具

为什么说 Miniconda 是 AI 开发者最理想的环境管理工具 在当今 AI 研发的日常中,你是否曾遇到过这样的场景:刚跑通一个图像分类项目,准备切换到新的 NLP 实验时,却因为 PyTorch 版本冲突导致整个环境崩溃?或者团队成员…

使用清华源加速PyTorch安装:结合Miniconda-Python3.11提升下载效率

使用清华源加速PyTorch安装:结合Miniconda-Python3.11提升下载效率 在人工智能项目启动的前几分钟,你是否经历过这样的场景?运行 conda install pytorch 后,进度条卡在“solving environment”长达二十分钟,或是 pip 下…