0基础保姆级教程:8大智能体设计模式,看完就能动手做AI助手

hi兄弟们,我是麦当mdldm,一个致力于把AI说明白、让大家都能用起来的0基础AI教学博主。


第一幕:2025的唯一AI关键词: Agent

如果说2025年只留一个词总结AI发展,那这个词就是:AI Agent

OpenAI 发布 o1、Claude 推出 Computer Use、Google 发布 Agent Developer Kit……大厂们都在疯狂发力 Agent。但说实话,我观察了一圈,90% 的人对 AI 的认知还停留在"聊天机器人"阶段

典型的场景是这样的:

你问AI:帮我写个Python爬虫 AI给你一段代码 你复制粘贴运行 报错了,你再问AI AI再给你改 ……

这就像你雇了个超级聪明的助手,却只会让他坐在边上回答问题,明明他能帮你把活儿全干了。

这就是今天我想跟兄弟们聊的话题——如何让 AI 从"聊天工具"变成"自主助手"?

前两天我看到 Google 的一位工程总监 Antonio Gulli 放出了一本新书《Agentic Design Patterns》,里面系统总结了 21 种智能体设计模式。我熬夜啃了一遍,然后替大家做了个精简提炼——咱们 0 基础不需要懂 21 种,掌握这 8 个核心模式,就够用了。

其实这些设计模式,也是我自己的**《0基础AI Agent开发实战》课程**第8集的核心内容。那集课程52分钟,我把 LangChain、LangGraph 这些框架拆得明明白白,带学员从0到1落地第一个 Agent MVP。今天先把基础理论分享给兄弟们。


第二幕:8大设计模式,手把手拆给你看

先说个核心概念:Agent(智能体)vs 传统 LLM 应用的区别是什么?

传统 LLM智能体 Agent
单次问答自主闭环运行
被动响应主动规划执行
无状态有记忆上下文
固定流程动态决策

举个栗子:

传统 LLM:

  • 你:帮我订张去北京的机票
  • AI:好的,请问什么时候出发?
  • (然后就没然后了,你还得一步步跟它交互)

智能体 Agent:

  • 你:帮我订张去北京的机票
  • AI:自动问你时间 → 搜索航班 → 筛选最优 → 填订单 → 完成支付 → 发确认通知
  • (全程自动,你只负责收结果)

看到区别了吗?Agent = LLM + 规划能力 + 工具使用 + 记忆系统

在我的课程第2集,我总结了理解Agent的四大理论

  • 大炮理论:每次对话都是一次瞄准行为,Prompt 是划定目标的过程
  • 桥梁理论:文本诠释一切,本质是用 LLM 生成文本的其他形式
  • 灯塔理论:每个 Agent 背后都需要一个灯塔 Prompt 来协调指引
  • 权杖理论:决策交给 AI,人类扮演监督者和边界制定者

这四个理论帮我建立了一套理解 AI Agent 的框架,兄弟们可以先把这套理论装进脑子里。

那怎么让 AI 变成 Agent 呢?咱们来看 8 大设计模式。


模式1:Reflection 反思模式 —— AI 自己检查作业

原理超简单:让 AI 做完事后再自己检查一遍,发现问题就修正。

用户提问 → 生成初稿 → 自我反思 → 修正完善 → 最终输出

实战场景:代码生成后自我审查

# 伪代码示例,逻辑一看就懂defreflection_agent(需求):第一步=AI生成(需求)第二步=AI自我审查(f"检查这段代码有什么问题:\n{第一步}")第三步=AI根据建议修改(f"根据这些建议优化代码:\n{第二步}")return第三步

效果:代码正确率从 70% 提升到 90%+

一句话总结:相当于让 AI 做完题后自己检查一遍


模式2:Tool Use 工具使用模式 —— 给 AI 装上手脚

原理:让 AI 能调用外部工具(搜索、计算器、数据库等),突破它训练数据的限制。

用户需求 → 判断用什么工具 → 调用工具 → 整合结果 → 回复用户

常见工具类型

  • 网页搜索(获取最新信息)
  • 代码解释器(执行代码)
  • 数据库查询
  • 图像生成/分析

一句话总结:给 AI 装上"手脚",让它能干更多事


模式3:ReAct 模式 —— 一边想一边做

原理Reasoning(推理)+Action(行动)交替进行,每一步都显式输出"我在想什么"和"我要做什么"。

问题 → 推理 → 行动 → 观察结果 → 继续推理 → ... → 答案

实战示例:查天气

用户:杭州今天天气怎么样? Thought 1: 用户想知道杭州今天的天气,我需要搜索 Action 1: Search("杭州天气") Observation 1: 多云,气温 5-12°C Thought 2: 信息已获取,可以回答用户了 Action 2: Finish("杭州今天多云,5-12度,建议多穿点")

为什么重要?传统 AI 是黑盒,你不知道它怎么想出来的;ReAct 是白盒,每一步都能看见,错了也方便改。

一句话总结:一边想一边做,边做边调整


模式4:Planning 规划模式 —— 遇事先列 To-Do List

原理:先制定计划,拆解任务,排序依赖关系,再逐步执行。

复杂任务 → 拆解子任务 → 排序依赖 → 逐步执行 → 汇总结果

实战示例:写一篇文章

1. 搜索相关资料 → 无依赖,先做 2. 整理资料要点 → 依赖步骤1 3. 撰写文章大纲 → 依赖步骤2 4. 写作正文内容 → 依赖步骤3 5. 审核修改 → 依赖步骤4 6. 生成最终版本 → 依赖步骤5

Planning 的价值:复杂任务可管理、出错能回滚、支持中断恢复

这个模式用Coze 工作流来实现特别方便。我在课程第7集花了44分钟详细讲 Coze 工作流,包括如何把 Workflow 打造成工具、如何集成到实际项目里——那节课很多学员说直接就能拿去变现了。

一句话总结:遇事先列个 To-Do List,然后一项项勾


模式5:Multi-Agent 多智能体协作 —— 让专业的人做专业的事

原理:多个专门化 Agent 协同完成复杂任务,每个 Agent 有明确分工。

用户任务 → 任务分发 → 专门 Agent 处理 → 结果整合 → 最终输出 ↓ ┌─────────┬─────────┬─────────┐ │研究员 │写作者 │审稿人 │ └─────────┴─────────┴─────────┘

实战示例:内容生产流水线

研究员=搜集资料 写作者=生成内容 审稿人=质量把控 发布者=最终审核# 协作流程资料=研究员.run(主题)初稿=写作者.run(资料)审核=审稿人.run(初稿)最终=发布者.run(审核)

多智能体 vs 单智能体:职责清晰、支持并行、适合复杂项目

一句话总结:让"专业的人"做"专业的事"

热门框架:AutoGen(微软)、CrewAI、MetaGPT


模式6:Routing 路由模式 —— 像客服转接一样

原理:根据任务类型,智能分配给最合适的处理流程。

用户请求 → 意图识别 → 分发路由 → 专业处理器 → 返回结果 ↓ ┌─────────┬───┴────┬─────────┐ │代码任务 │数据分析 │写作任务 │ └─────────┴─────────┴─────────┘

实战示例:智能客服

意图=识别用户意图(用户消息)if意图=="技术问题":return技术支持Agent(用户消息)elif意图=="账单问题":return账单Agent(用户消息)elif意图=="投诉建议":return投诉Agent(用户消息)

一句话总结:把问题分给对应的专家处理


模式7:Parallelization 并行模式 —— 多线程干活

原理:同时执行多个独立任务,提升效率。

任务 → 拆解 → 并行执行 → 结果聚合

实战示例:多角度分析

# 同时从4个角度分析,最后汇总结果并行执行(技术角度分析(主题),商业角度分析(主题),用户角度分析(主题),法律角度分析(主题))→ 汇总结论

效果:速度提升 3-5 倍,结果更全面

一句话总结:多线程干活,速度更快


模式8:Prompt Chaining 提示链模式 —— 把复杂问题分解

原理:将复杂任务拆成多个步骤,用多个 Prompt 串联执行。

输入 → Step1(收集素材) → Step2(生成大纲) → Step3(写作) → Step4(润色) → 最终结果

实战示例:文章写作流水线

Step1=搜索并收集关键信息 Step2=基于素材写大纲 Step3=根据大纲写初稿 Step4=对初稿润色优化returnStep4的输出

提示链 vs 单次 Prompt:分步骤执行、每步质量可控、容易定位问题

一句话总结:把复杂问题分解成小步,一步步来


8大模式成熟度对比

模式成熟度难度使用频率
Reflection⭐⭐⭐⭐⭐简单极高
Tool Use⭐⭐⭐⭐⭐中等极高
ReAct⭐⭐⭐⭐中等
Prompt Chaining⭐⭐⭐⭐⭐简单
Routing⭐⭐⭐⭐中等
Parallelization⭐⭐⭐中等
Planning⭐⭐⭐较难
Multi-Agent⭐⭐较难

我的建议:从 Reflection 和 Tool Use 开始,这两个最简单也最实用。掌握后 80% 场景都能应对。


新手从哪开始学?4周入门路径

第1周:掌握 Reflection 和 Tool Use ↓ 第2周:实践 ReAct 和 Prompt Chaining ↓ 第3周:尝试 Routing 和 Parallelization ↓ 第4周:探索 Planning 和 Multi-Agent

实战项目推荐(从简单到复杂):

🥉入门级(1-2天)

  • 带反思的代码生成器(Reflection)
  • 天气查询助手(Tool Use)

🥈进阶级(3-5天)

  • 智能研究助手(ReAct + Tool Use)
  • 多角度内容分析器(Parallelization)

🥇高级级(1-2周)

  • 自媒体内容生产线(Multi-Agent)
  • 全能智能客服(Routing + 组合模式)

想系统深入学习?这套课程带你从0到1

文章里讲的这些内容,其实是我**《0基础AI Agent开发实战》**课程的一部分。这套课程是我给500+企业做AI培训时沉淀下来的方法论,浓缩成10集视频,总共5.5小时,带兄弟们从0到1完成一个AI产品。

课程完整路径

第0集:最短路径打造AI产品能力(课程导览) ↓ 第1集:大模型基础扫盲(Token、Embedding、RAG) ↓ 第2集:四大理论梳理(大炮/桥梁/灯塔/权杖) ↓ 第3集:国内外大模型大盘点 ↓ 第4集:API调用入门(Cherry Studio实战) ↓ 第5集:AI代码编辑器(Cursor/Tare/Qoder) ↓ 第6集:7分钟落地一个网站(V0.dev) ↓ 第7集:Coze工作流集成实战 ↓ 第8集:AI Agent核心(LangChain + LangGraph) ↓ 第9集:项目部署上线(GitHub + Vercel + 域名)

课程结束后,你会拥有

  • 一个可全球访问的AI产品
  • 从认知到调用到开发到部署的完整能力
  • 可直接变现的技能

这套课程被盗版百万播放后,我决定把正版内容整理好放到自己的知识站里。如果兄弟们想系统学习,欢迎来 mdldm.club 看看。


第三幕:别让 AI 只是聊天机器人

兄弟们,今天聊了这么多,核心其实就一句话:

AI 不只是用来聊天的,让它帮你干活才是正道。

2025 年是 AI Agent 落地元年,企业需求暴增、技术成熟度越来越高。作为咱们 0 基础学 AI 的人,现在正是入局的好时机。

但记住我的原则

  1. 不要一口气学完- 从 Reflection 和 Tool Use 开始就够了
  2. 动手实践- 看懂和会做是两码事
  3. 先解决简单问题- 不要上来就搞复杂系统

我之前在coze教学和企业培训中,发现很多新手最大的问题就是想得太复杂、动手太少。其实这 8 大模式,每一个都很简单,关键是要去试。

最后送兄弟们一句话

技术是为人服务的,不要被工具奴役。掌握这些设计模式,是为了让你更高效地解决问题,而不是为了炫技。


欢迎大家:

  • B站/小红书/掘金:麦当mdldm
  • 个人知识站:www.mdldm.club (海量免费教程和付费精品课,等你来解锁!)

如果这篇文章对你有帮助,记得点赞收藏,有疑问评论区见,咱们下期再见!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1068614.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

布局对话框

QColorDialog(颜色对话框)QColorDialog 是 Qt 框架中标准的颜色选择对话框组件,隶属于 QDialog 子类,专为图形界面中选择颜色设计,支持跨平台(Windows/macOS/Linux)、原生系统样式适配、多颜色模式(RGB/HSV/CM…

基于Comsol的高坝应力渗流耦合三维分析探索

基于comsol的高坝-应力渗流耦合分析,三维程序,非二维在水利工程领域,高坝的安全性一直是重中之重。应力渗流耦合分析对于准确评估高坝的稳定性有着关键作用。而Comsol作为一款强大的多物理场仿真软件,为我们实现高坝应力渗流耦合三…

TCP\IP和https流程

TCP\IP和https流程CP/IP五层模型 网络通信常参考经典的TCP/IP五层模型: 应用层:为应用软件提供服务,如HTTP、FTP协议。 传输层:定义数据的传输,如TCP、UDP协议,数据过大会分包。 网络层:在节点间创建逻辑链路。…

HTTP安全攻防:常见漏洞原理与防护措施(附练习题)

一、HTTP安全概述 HTTP协议本身的明文传输和无状态特性,使其存在天然的安全隐患;而Web应用基于HTTP的开发漏洞,进一步放大了安全风险。常见的HTTP安全问题主要分为协议层漏洞和应用层漏洞两类,防护需从协议与开发两…

HTTP核心头字段记忆口诀

一、请求头口诀(4个核心字段) Host必带指域名,User-Agent辨身份, Cookie带状态,Content-Type述格式。 口诀释义Host必带指域名:Host是HTTP/1.1必传字段,用来指定目标网站的域名。User-Agent辨身份:User-Agent告…

实用指南:天机学堂day09学习

pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Monaco", "Courier New", …

探寻电池精品定制之路,聚电新能源引领行业新高度

在当今科技飞速发展的时代,电池作为众多电子产品的核心动力源,其品质和定制服务的需求日益增长。选择一家靠谱、性价比高且具备实力的电池厂家,成为众多企业和消费者关注的焦点。下面,我们就来深度剖析电池精品定制…

hot100 142.环形链表Ⅱ

见代码随想录 142.环形链表Ⅱ

2025.12.25作业

<!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>光的折射控制器 | 斯涅尔定律演示</title>…

0x3f第13天复习 (12:40-17:45)

0-1背包10min8min x 边界条件目标和 回溯10min9min x 边界条件目标和双数组1min9min x 细节目标和单数组2min1min x 完全背包1min1min零钱兑换回溯4min8min x零钱兑换递推5min10min x 二叉搜索树验证 前序2min ac4min ac4min ac2min ac二叉搜索树验证 中序 6min x 基本没问题…

VMware Workstation 挂载共享文件夹

前提条件 虚拟机已安装 VMware Tools&#xff08;这是实现共享文件夹的核心组件&#xff09;。 安装方法&#xff1a;虚拟机菜单 → 虚拟机 → 安装 VMware Tools&#xff0c;然后在 Linux 中挂载光驱并执行安装脚本。设置共享文件夹&#xff08;宿主机侧&#xff09; 关闭或暂…

2025论文神器终极榜单:7款工具带真实参考文献,查重低原创高!

对于每一位大学生、研究生和科研人员而言&#xff0c;论文写作都是一场旷日持久的“战役”。从开题构思、文献查阅、初稿撰写&#xff0c;到格式调整、查重降重&#xff0c;每一步都充满挑战。在AI技术爆发的2025年&#xff0c;你是否还在用传统方式“苦战”&#xff1f;是时候…

汉诺塔递归函数,农夫抓牛问题,数字金字塔最大路径和问题

def hanoi(n, source, target, auxiliary):"""汉诺塔递归函数:param n: 当前要移动的圆盘数量:param source: 起始柱子:param target: 目标柱子:param auxiliary: 辅助柱子"""if n 1:# 最小情况&#xff1a;直接将圆盘1从源移动到目标print(f&q…

【毕业设计】基于springboot的学院失物招领平台的设计与实现(源码+文档+远程调试,全bao定制等)

博主介绍&#xff1a;✌️码农一枚 &#xff0c;专注于大学生项目实战开发、讲解和毕业&#x1f6a2;文撰写修改等。全栈领域优质创作者&#xff0c;博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围&#xff1a;&am…

人工智能通识作业

一、汉诺塔问题&#xff08;重复出现 2 次&#xff0c;要求一致&#xff09;问题描述&#xff1a;有 A、B、C 三根柱子&#xff0c;n 个 “上小下大” 叠放于 A 柱的圆盘&#xff0c;需将所有圆盘移到 C 柱&#xff08;可借助 B 柱&#xff09;&#xff0c;每次仅能移动 1 个圆…

深入浅出理解Spring Boot中的依赖注入

在现代软件开发中&#xff0c;依赖注入&#xff08;Dependency Injection&#xff0c;简称DI&#xff09;已经成为了一种常见且重要的设计模式。它的核心思想是将对象的依赖关系从代码中解耦出来&#xff0c;从而提高代码的可维护性、可测试性和灵活性。在Java开发中&#xff0…

口碑佳且可个性化定制的丁基胶带供应商推荐

在建筑、汽车、家电等众多行业,丁基胶带都扮演着至关重要的角色。选择一家口碑佳且能提供个性化定制服务的丁基胶带供应商,对于企业的生产和项目的顺利进行有着不可忽视的作用。 丁基胶带行业优势与特点 丁基胶带具有…

人工智能作业--光的折射

<!DOCTYPE html> <html lang"zh-CN"> <head> <meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width, initial-scale1.0"> <title>光的折射控制器</title> <script sr…

超强Python/C++界面类生成工具CodeGenor之项目结构生成

前言&#xff1a; CodeGenor&#xff0c;一款快速生成Python&#xff08;PySide/PyQt&#xff09;、C UI界面的超强利器。CodeGenor之家网站&#xff1a;http://106.12.173.80/ 知识星球&#xff1a;https://wx.zsxq.com/group/48885554415148 详情浏览&#xff1a; https:…