【NLP】 5. Word Analogy Task(词类比任务)与 Intrinsic Metric(内在度量)

Word Analogy Task(词类比任务)

定义:Word Analogy Task 是用于评估词向量质量的内在指标(Intrinsic Metric)。该任务基于这样的假设:如果词向量能够捕捉单词之间的语义关系,那么这些关系应该能够在向量空间中保持一定的结构。

示例
在一个理想的词向量空间中,单词之间的关系应该满足如下等式:

k i n g − m a n + w o m a n ≈ q u e e n king−man+woman≈queen kingman+womanqueen

即,如果你用向量 king 减去 man(表示去掉“男性”这个概念),再加上 woman(加入“女性”这个概念),那么你应该接近 queen(女王)的向量

计算方法
给定一个类比问题 A:B::C:D,即“A 之于 B,如同 C 之于 D”,则计算:D=B−A+C

然后,在词汇表中找到与 D 最接近的词向量,作为预测的答案。

应用

  • 评估词向量的质量,验证其是否能有效捕捉语义和句法关系。
  • 在训练 word embeddings(如 Word2Vec, GloVe, FastText)时常用此方法进行测试。

Intrinsic Metric(内在度量)

定义:Intrinsic Metric 是衡量 NLP 模型(如词向量模型)质量的一类指标,通常基于特定的语言学任务,如 Word Analogy Task、Word Similarity Task 和 Clustering Coherence。

特点

  • 快速计算:不需要依赖下游任务,只基于词向量本身计算指标。
  • 独立于具体应用:不同于 Extrinsic Metric(外在度量,依赖于特定 NLP 任务的表现),Intrinsic Metric 更关注词向量本身的质量。

常见的 Intrinsic Metric

  1. Word Similarity Task:通过计算词向量的余弦相似度,评估模型对同义词、近义词的表现。
  2. Word Analogy Task:评估词向量是否能正确表示语义关系(如 “Paris” : “France” :: “Berlin” : “Germany”)。
  3. Clustering Coherence:测试词向量在类别划分上的表现,如同义词是否聚集在一起。

优缺点
优点

  • 计算成本低,适用于快速测试词向量质量。
  • 提供模型的直观解释性(可以通过类比关系检查向量的语义质量)。

缺点

  • 不能直接反映模型在实际 NLP 任务中的表现。
  • 可能对训练数据敏感,不一定能泛化到真实任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/73552.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

矩阵幂(矩阵k次幂)

矩阵幂 #include<stdio.h> //矩阵乘法 void cf(int a[20][20],int b[20][20],int result[20][20],int n){for(int i0;i<n;i){for(int j0;j<n;j){result[i][j]0;for(int k0;k<n;k){result[i][j]a[i][k]*b[k][j];}}} }void print(int a[20][20],int n){for(int…

信火一体作战模式运用特点分析及对一体化防空反导能力建设的启示

文章目录 内容摘要1. 引言2. 信火一体作战模式在现代战争中的新内涵和特征2.1 充当火力和信息要素的作战单元种类更加丰富2.2 信息利用更加凸显异构平台间的数据共享和情报融合2.3 作战环节上更加强调指挥决策的敏捷性和智能化3. 增强防空反导能力的举措建议3.1 强化各类作战单…

样本是怎么估计总体的

样本是怎么估计总体的 flyfish 1. 什么是样本估计总体&#xff1f; 样本估计总体是指通过样本数据&#xff08;例如100人的身高&#xff09;推断总体参数&#xff08;例如全国人口的平均身高&#xff09;。核心方法包括&#xff1a; 点估计&#xff1a;用样本统计量直接估计…

自己动手打造AI Agent:基于DeepSeek-R1+websearch从零构建自己的Manus深度探索智能体AI-Research

第一章&#xff1a;AI Agent基础与DeepSeek-R1架构解析&#xff08;1/10&#xff09; 1.1 AI Agent技术演进与核心价值 人工智能代理&#xff08;AI Agent&#xff09;经历了从规则驱动到数据驱动的范式转移。早期基于专家系统的符号主义方法&#xff08;如MYCIN医疗诊断系统…

DeepSeek 助力 Vue3 开发:打造丝滑的表格(Table)之添加列宽调整功能,示例Table14_13可展开行的固定表头表格

前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏+关注哦 💕 目录 DeepSeek 助力 Vue3 开发:打造丝滑的表格(Table)之添加列宽调整功能,示例Table14_13可展开行的固…

Gemini Robotics:将人工智能带入物理世界

25年3月来自谷歌的技术报告“Gemini Robotics: Bringing AI into the Physical World”。 大型多模态模型的最新进展&#xff0c;已使数字领域出现卓越的通才能力&#xff0c;但将其转化为机器人等物理智体仍然是一项重大挑战。一般有用的机器人需要能够理解周围的物理世界&am…

关于离子滤波小记

粒子滤波&#xff08;Particle Filter, PF&#xff09; 粒子滤波是一种基于蒙特卡洛方法的贝叶斯滤波算法&#xff0c;主要用于解决非线性、非高斯的状态估计问题。它广泛应用于机器人定位、目标跟踪、金融建模等领域。 1. 粒子滤波的基本概念 粒子滤波的核心思想是用一组加权…

机器语言基础

机器语言是计算机能够直接识别和执行的二进制代码语言&#xff0c;由0和1组成。以下是关于机器语言的基本介绍&#xff1a; 特点 - 执行效率高&#xff1a;是计算机硬件直接支持的语言&#xff0c;无需翻译&#xff0c;执行速度快&#xff0c;能充分发挥计算机的性能。 - 硬…

生活中的可靠性小案例11:窗户把手断裂

窗户把手又断了&#xff0c;之前也断过一次&#xff0c;使用次数并没有特别多。上方的图是正常的把手状态&#xff0c;断的形状如下方图所示。 这种悬臂梁结构&#xff0c;没有一个良好的圆角过渡&#xff0c;导致应力集中。窗户的开关&#xff0c;对应的是把手的推拉&#xff…

多元时间序列预测的范式革命:从数据异质性到基准重构

本推文介绍了一篇来自中国科学院计算技术研究所等机构的论文《Exploring Progress in Multivariate Time Series Forecasting: Comprehensive Benchmarking and Heterogeneity Analysis》&#xff0c;发表在《IEEE Transactions on Intelligent Transportation Systems》。论文…

印章/公章识别:PaddleX下的“Seal-Recognition”模型

最近做项目需要对印章进行识别&#xff0c;并提取其中的印章文字&#xff0c;又不希望这个模型太大&#xff0c;还要方便部署&#xff0c;于是乎这个模型是个不错的选择。 一、模型简介 “Seal-Recognition”模型是PaddleX旗下的一款模型&#xff08;PaddleX 是基于飞桨框架构…

An effective algorithm for peptide de novo sequencing from MS/MS spectra

1. 研究背景 数据库搜索方法 需要已知的蛋白数据库&#xff0c;但对于未知蛋白质&#xff0c;无法适用。de novo 测序方法 直接从 MS/MS 数据推断氨基酸序列&#xff0c;非常重要。 2. 现有方法的问题 暴力搜索方法&#xff1a;枚举所有可能的肽序列并与 MS/MS 数据比对&…

算法专题一:双指针

1.移动零 题目链接&#xff1a;283. 移动零 - 力扣&#xff08;LeetCode&#xff09; 我们可以定义一个dest&#xff0c;一个cur&#xff0c;dest表示数组中不为零的数的最后一位&#xff0c;cur用来遍历数组 class Solution {public void moveZeroes(int[] nums) {for(int cur…

【大模型实战】利用ms-swift微调框架对QwQ-32B推理模型进行微调

1. 背景介绍 之前我们在《大模型训练/微调的一些经验分享》、《利用DeepSeek-R1数据微调蒸馏ChatGLM32B让大模型具备思考能力》中做了相关模型微调的介绍。目前在基座大模型能力还没有达到足够牛的情况下&#xff0c;大模型微调在商业化、垂直领域应用依然是不可或缺&#xff0…

【Unity3D】Addressables使用流程

Package Manager - 搜索 Addressables 安装 Window -> Asset Management -> Addressables 打开窗口 New -> 新建Packed Assets 资源组 默认资源组Default xxx (Default) 将资源&#xff0c;如预制体直接拖拽进资源组 Build -> New Build -> Default Buil…

k8s serviceaccount在集群内指定apiserver时验证错误的问题

在主机上&#xff0c;找到TOKEN&#xff0c;可以直接指定apiserver使用 rootubuntu-server:/home# kubectl auth can-i --list --server https://192.168.85.198:6443 --token"eyJhbGciOiJSUzI1NiIsImtpZCI6IlFlMHQ3TzhpcGw1SnRqbkYtOC1NUWlWNUpWdGo5SGRXeTBvZU9ib25iZD…

Linux驱动开发-①pinctrl 和 gpio 子系统②并发和竞争③内核定时器

Linux驱动开发-①pinctrl 和 gpio 子系统②并发和竞争③内核定时器 一&#xff0c;pinctrl 和 gpio 子系统1.pinctrl子系统2.GPIO子系统 二&#xff0c;并发和竞争1.原子操作2.自旋锁3.信号量4.互斥体 三&#xff0c;按键实验四&#xff0c;内核定时器1.关于定时器的有关概念1.…

数据库的高阶知识

目录 一、case when二、几种常见的嵌套查询2.1 比较运算符2.2 ANY/ALL 关键词2.3 in 关键词2.4 EXISTS关键词2.5 in和exists的异同点 三、开窗函数 数据库的基本知识 数据库的高阶知识 一、case when 在实际工作中&#xff0c;经常会涉及以下两类问题&#xff1a; 数据的映射…

【Kubernetes】Service 的类型有哪些?ClusterIP、NodePort 和 LoadBalancer 的区别?

在 Kubernetes 中&#xff0c;Service 是一种抽象的方式&#xff0c;用于将一组 Pod 进行连接并暴露给外部或集群内部访问。它的主要目的是通过提供稳定的 IP 地址和端口来允许其他服务或客户端与一组 Pod 进行通信。 Service 类型 Kubernetes 中 Service 有四种主要类型&…

MapReduce处理数据流程

&#xff08;一&#xff09;Shuffle MapReduce中的Shuffle过程指的是在Map方法执行后、Reduce方法执行前对数据进行分区排序的阶段 &#xff08;二&#xff09;处理流程 1. 首先MapReduce会将处理的数据集划分成多个split&#xff0c;split划分是逻辑上进行划分&#xff0c;…