毕业项目推荐:基于yolov8/yolo11的野生菌菇检测识别系统(python+卷积神经网络)

文章目录

  • 概要
  • 一、整体资源介绍
    • 技术要点
    • 功能展示:
      • 功能1 支持单张图片识别
      • 功能2 支持遍历文件夹识别
      • 功能3 支持识别视频文件
      • 功能4 支持摄像头识别
      • 功能5 支持结果文件导出(xls格式)
      • 功能6 支持切换检测到的目标查看
  • 二、数据集
  • 三、算法介绍
    • 1. YOLOv8 概述
      • 简介
    • 2. YOLO11 概述
      • YOLOv11:Ultralytics 最新目标检测模型
  • 🌟 四、模型训练步骤
  • 🌟 五、模型评估步骤
  • 🌟 六、训练结果
  • 🌟完整代码

往期经典回顾

项目项目
基于yolov8的车牌检测识别系统基于yolov8/yolov5的钢铁缺陷检测系统
基于yolov8的人脸表情检测识别系统基于深度学习的PCB板缺陷检测系统
基于yolov8/yolov5的茶叶等级检测系统基于yolov8/yolov5的农作物病虫害检测识别系统
基于yolov8/yolov5的交通标志检测识别系统基于yolov8/yolov5的课堂行为检测识别系统
基于yolov8/yolov5的海洋垃圾检测识别系统基于yolov8/yolov5的垃圾检测与分类系统
基于yolov8/yolov5的行人摔倒检测识别系统基于yolov8/yolov5的草莓病害检测识别系统
基于yolov8/yolov5/yolo11的动物检测识别系统

概要

本文将详细介绍如何以官方yolov8yolov11为主干,实现对苹果叶片病害的检测识别,且利用PyQt5设计了两种简约的系统UI界面。在界面中,您可以选择自己的视频文件、图片文件进行检测。此外,您还可以更换自己训练的主干模型,进行自己数据的检测。

引言
野生菌菇的快速准确识别对食品安全与生态保护至关重要,传统鉴别依赖专家经验,存在效率低、误判风险高及难以应对形态多样性(如相似种、生长阶段差异)等挑战。基于深度学习的野生菌菇检测系统通过多模态图像(可见光、近红外)分析与卷积神经网络,可精准分类可食用种与有毒种,并适应复杂环境(如林下光照不均、背景干扰)。该系统为野外采集安全预警、生物多样性监测及公众科普提供技术支持,对减少中毒事件、促进生态资源可持续利用具有重要应用价值。

我们的系统界面不仅外观优美,而且具备出色的检测精度和强大的功能。它支持多目标实时检测,并允许您自由选择感兴趣的检测目标。

yolov8界面如下
在这里插入图片描述

yolo11界面如下 在这里插入图片描述

关键词:野生菌菇检测;目标分类;深度学习;特征融合;注意力机制;卷积神经网络

在这里插入图片描述

一、整体资源介绍

项目中所用到的算法模型和数据集等信息如下:

算法模型:
    yolov8yolov8 + SE注意力机制yolo11yolo11 + SE注意力机制

数据集:
    网上下载的数据集,格式都已转好,可直接使用。

以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点

技术要点

  • OpenCV:主要用于实现各种图像处理和计算机视觉相关任务。
  • Python:采用这种编程语言,因其简洁易学且拥有大量丰富的资源和库支持。
  • 数据增强技术: 翻转、噪点、色域变换,mosaic等方式,提高模型的鲁棒性。

功能展示:

部分核心功能如下:

  • 功能1: 支持单张图片识别
  • 功能2: 支持遍历文件夹识别
  • 功能3: 支持识别视频文件
  • 功能4: 支持摄像头识别
  • 功能5: 支持结果文件导出(xls格式)
  • 功能6: 支持切换检测到的目标查看

功能1 支持单张图片识别

系统支持用户选择图片文件进行识别。通过点击图片选择按钮,用户可以选择需要检测的图片,并在界面上查看所有识别结果。该功能的界面展示如下图所示:
在这里插入图片描述

在这里插入图片描述

功能2 支持遍历文件夹识别

系统支持选择整个文件夹进行批量识别。用户选择文件夹后,系统会自动遍历其中的所有图片文件,并将识别结果实时更新显示在右下角的表格中。该功能的展示效果如下图所示:
在这里插入图片描述

在这里插入图片描述

功能3 支持识别视频文件

在许多情况下,我们需要识别视频中的目标。因此,系统设计了视频选择功能。用户点击视频按钮即可选择待检测的视频,系统将自动解析视频并逐帧识别多个目标,同时将识别结果记录在右下角的表格中。以下是该功能的展示效果:
在这里插入图片描述

在这里插入图片描述

功能4 支持摄像头识别

在许多场景下,我们需要通过摄像头实时识别目标。为此,系统提供了摄像头选择功能。用户点击摄像头按钮后,系统将自动调用摄像头并进行实时识别,识别结果会即时记录在右下角的表格中。
在这里插入图片描述

在这里插入图片描述

功能5 支持结果文件导出(xls格式)

本系统还添加了对识别结果的导出功能,方便后续查看,目前支持导出xls数据格式,功能展示如下:
在这里插入图片描述

在这里插入图片描述

功能6 支持切换检测到的目标查看

在这里插入图片描述

在这里插入图片描述

二、数据集

提供全面、结构化的数据集,它不仅包含了丰富的类别,而且已经细致地划分为训练集、验证集和测试集,以满足不同阶段的模型训练需求。而且数据集的格式,可直接支持YOLO训练,无需额外的格式转换工作。

5367 张数据集,9个类别
以下是类别:在这里插入图片描述

部分数据样式如下:

在这里插入图片描述

三、算法介绍

1. YOLOv8 概述

简介

YOLOv8算法的核心特性和改进如下:

  • 全新SOTA模型
    YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X五种尺度的模型,以满足不同场景的需求。
  • Backbone
    骨干网络和Neck部分参考了YOLOv7 ELAN的设计思想。
    YOLOv5的C3结构替换为梯度流更丰富的C2f结构
    针对不同尺度的模型,调整了通道数,使其更适配各种任务需求。
    在这里插入图片描述
    网络结构如下:
    在这里插入图片描述

相比之前版本,YOLOv8对模型结构进行了精心微调,不再是“无脑”地将同一套参数应用于所有模型,从而大幅提升了模型性能。这种优化使得不同尺度的模型在面对多种场景时都能更好地适应。

然而,新引入的C2f模块虽然增强了梯度流,但其内部的Split等操作对特定硬件的部署可能不如之前的版本友好。在某些场景中,C2f模块的这些特性可能会影响模型的部署效率

2. YOLO11 概述

YOLOv11:Ultralytics 最新目标检测模型

YOLOv11 是 Ultralytics 公司在 2024 年推出的 YOLO 系列目标检测模型的最新版本。以下是对 YOLOv11 的具体介绍:

主要特点

  1. 增强的特征提取

    • 采用改进的骨干和颈部架构,如在主干网络中引入了 c2psa 组件,并将 c2f 升级为 c3k2
    • c3k 允许用户自定义卷积模块的尺寸,提升了灵活性。
    • c2psa 通过整合 psa(位置敏感注意力机制)来增强模型的特征提取效能。
    • 颈部网络采用了 pan 架构,并集成了 c3k2 单元,有助于从多个尺度整合特征,并优化特征传递的效率。
  2. 针对效率和速度优化

    • 精细的架构设计和优化的训练流程,在保持准确性和性能最佳平衡的同时,提供更快的处理速度。
    • 相比 YOLOv10,YOLOv11 的延迟降低了 25%-40%,能够达到每秒处理 60 帧 的速度,是目前最快的目标检测模型之一。
  3. 更少的参数,更高的准确度

    • YOLOv11mCOCO 数据集上实现了比 YOLOv8m 更高的 mAP,参数减少了 22%,提高了计算效率,同时不牺牲准确度。
  4. 跨环境的适应性

    • 可无缝部署在 边缘设备云平台 和配备 NVIDIA GPU 的系统上,确保最大的灵活性。
  5. 支持广泛的任务范围

    • 支持多种计算机视觉任务,包括 目标检测实例分割图像分类姿态估计定向目标检测(OBB)

架构改进

  1. 主干网络

    • 引入了 c2psa 组件,并将 c2f 升级为 c3k2
    • c3k 支持用户自定义卷积模块尺寸,增强灵活性。
    • c2psa 整合了 psa(位置敏感注意力机制),提升特征提取效能。
  2. 颈部网络

    • 采用 pan 架构,并集成了 c3k2 单元,帮助从多个尺度整合特征并优化特征传递效率。
  3. 头部网络

    • YOLOv11 的检测头设计与 YOLOv8 大致相似。
    • 在分类(cls)分支中,采用了 深度可分离卷积 来增强性能。

性能优势

  1. 精度提升

    • COCO 数据集上取得了显著的精度提升:
      • YOLOv11x 模型的 mAP 得分高达 54.7%
      • 最小的 YOLOv11n 模型也能达到 39.5%mAP 得分
    • 与前代模型相比,精度有明显进步。
  2. 速度更快

    • 能够满足实时目标检测需求

🌟 四、模型训练步骤

  1. 使用pycharm打开代码,找到train.py打开,示例截图如下:
    在这里插入图片描述

  2. 修改 model_yaml 的值,根据自己的实际情况修改,想要训练 yolov8s模型 就 修改为 model_yaml = yaml_yolov8s, 训练 添加SE注意力机制的模型就修改为 model_yaml = yaml_yolov8_SE

  3. 修改data_path 数据集路径,我这里默认指定的是traindata.yaml 文件,如果训练我提供的数据,可以不用改

  4. 修改 model.train()中的参数,按照自己的需求和电脑硬件的情况更改

    # 文档中对参数有详细的说明
    model.train(data=data_path,             # 数据集imgsz=640,                  # 训练图片大小epochs=200,                 # 训练的轮次batch=2,                    # 训练batchworkers=0,                  # 加载数据线程数device='0',                 # 使用显卡optimizer='SGD',            # 优化器project='runs/train',       # 模型保存路径name=name,                  # 模型保存命名)
    
  5. 修改traindata.yaml文件, 打开 traindata.yaml 文件,如下所示:
    在这里插入图片描述
    在这里,只需修改 path 的值,其他的都不用改动(仔细看上面的黄色字体),我提供的数据集默认都是到 yolo 文件夹,设置到 yolo 这一级即可,修改完后,返回 train.py 中,执行train.py

  6. 打开 train.py ,右键执行。
    在这里插入图片描述

  7. 出现如下类似的界面代表开始训练了
    在这里插入图片描述

  8. 训练完后的模型保存在runs/train文件夹下
    在这里插入图片描述


🌟 五、模型评估步骤

  1. 打开val.py文件,如下图所示:
    在这里插入图片描述

  2. 修改 model_pt 的值,是自己想要评估的模型路径

  3. 修改 data_path ,根据自己的实际情况修改,具体如何修改,查看上方模型训练中的修改步骤

  4. 修改 model.val()中的参数,按照自己的需求和电脑硬件的情况更改

    model.val(data=data_path,           # 数据集路径imgsz=300,                # 图片大小,要和训练时一样batch=4,                  # batchworkers=0,                # 加载数据线程数conf=0.001,               # 设置检测的最小置信度阈值。置信度低于此阈值的检测将被丢弃。iou=0.6,                  # 设置非最大抑制 (NMS) 的交叉重叠 (IoU) 阈值。有助于减少重复检测。device='0',               # 使用显卡project='runs/val',       # 保存路径name='exp',               # 保存命名)
    
  5. 修改完后,即可执行程序,出现如下截图,代表成功(下图是示例,具体以自己的实际项目为准。)
    在这里插入图片描述

  6. 评估后的文件全部保存在在 runs/val/exp... 文件夹下
    在这里插入图片描述


🌟 六、训练结果

我们每次训练后,会在 run/train 文件夹下出现一系列的文件,如下图所示:
在这里插入图片描述

   如果大家对于上面生成的这些内容(confusion_matrix.png、results.png等)不清楚是什么意思,可以在我的知识库里查看这些指标的具体含义,示例截图如下:

在这里插入图片描述

🌟完整代码

   如果您希望获取博文中提到的所有实现相关的完整资源文件(包括测试图片、视频、Python脚本、UI文件、训练数据集、训练代码、界面代码等),这些文件已被全部打包。以下是完整资源包的截图

在这里插入图片描述

您可以通过下方演示视频视频简介部分进行获取:

演示视频:
基于深度学习的野生菌菇检测识别系统(v8)

基于深度学习的野生菌菇检测识别系统(v11)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/72049.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【精华】为什么class在前端开发中不常用?

为什么class在前端开发中不常用? js是一种基于原型的语言。它的对象继承是通过 原型链(prototype chain)实现的,每个对象都有一个 proto 属性指向它的原型。(大多数传统面向对象语言(如 Java、C、Python、…

【六祎 - Note】SQL备忘录;DDL,DML,DQL,DCL

SQL备忘录 from to : 点击访问源地址

阿里云物联网获取设备属性api接口:QueryDevicePropertyData

阿里云物联网接口:QueryDevicePropertyData 说明:调用该接口查询指定设备或数字孪生节点,在指定时间段内,单个属性的数据 比如提取上传到物联网的温度数据 api文档:QueryDevicePropertyData_物联网平台_API文档-阿里…

需求和开发模型

文章目录 什么是需求?用户需求软件需求用户需求和软件需求的不同 开发模型什么是“模型”?软件的生命周期常见的开发模型瀑布模型(Waterfall Model)螺旋模型增量模型、迭代模型敏捷模型 测试模型V 模型W 模型(双 V 模型…

21-发糖果

n 个孩子站成一排。给你一个整数数组 ratings 表示每个孩子的评分。 你需要按照以下要求,给这些孩子分发糖果: 每个孩子至少分配到 1 个糖果。 相邻两个孩子评分更高的孩子会获得更多的糖果。 请你给每个孩子分发糖果,计算并返回需要准备的 最…

sql深入学习

文章目录 前言知识学习注释的两种形式字符型注入万能密码 布尔盲注报错注入堆叠注入时间盲注二次注入 小技巧 前言 这次学习建立在对数据库有基本的认识,了解基础的增删改查语句,数字型注入和字符型注入的基础上,进一步深入学习知识&#xf…

利用three.js在Vue项目中展示重构的stl模型文件

一、目的 为了在前端页面展示3d打印机打印过程 二、前期准备 完整模型的stl文件和模型切割成的n个stl文件 models文件夹下的文件就是切割后的stl文件 三、代码 <template><div ref"threeContainer" class"three-container"></div><…

【Eureka 缓存机制】

今天简单介绍一下Eureka server 的缓存机制吧✌️✌️✌️ 一、先来个小剧场&#xff1a;服务发现的"拖延症" 想象你是个外卖小哥&#xff08;客户端&#xff09;&#xff0c;每次接单都要打电话问调度中心&#xff08;Eureka Server&#xff09;&#xff1a;“现在…

Python--内置模块和开发规范(下)

2. 开发规范 2.1 单文件应用 文件结构示例 # 文件注释 import os import jsonDB_PATH "data.json" # 常量放顶部def load_data():"""函数注释&#xff1a;加载数据"""if os.path.exists(DB_PATH):with open(DB_PATH, "r"…

go设计模式

刘&#xff1a;https://www.bilibili.com/video/BV1kG411g7h4 https://www.bilibili.com/video/BV1jyreYKE8z 1. 单例模式 2. 简单工厂模式 代码逻辑&#xff1a; 原始&#xff1a;业务逻辑层 —> 基础类模块工厂&#xff1a;业务逻辑层 —> 工厂模块 —> 基础类模块…

搭建数字化生态平台公司:痛点与蚓链解决方案

在数字技术突飞猛进的当下&#xff0c;数字化生态平台成为众多企业实现创新发展、拓展业务版图的 “秘密工具”。今天&#xff0c;咱们就一起来聊聊搭建这类平台的公司&#xff0c;看看它们有啥独特之处&#xff0c;又面临哪些难题。 一、面临的痛点 &#xff08;一&#xff0…

标记符号“<”和“>”符号被称为“尖括号”或“角括号”

你提到的“<”和“>”符号被称为“尖括号”或“角括号”。它们常用于编程语言中表示类型参数&#xff08;如泛型&#xff09;、HTML标签&#xff08;如<div>&#xff09;、数学中的不等式&#xff08;如< 5&#xff09;等。 好的&#xff0c;我来用通俗的方式解…

云平台DeepSeek满血版:引领AI推理革新,开启智慧新时代

引言&#xff1a;人工智能的未来——云平台的卓越突破 在当今科技飞速发展的时代&#xff0c;人工智能&#xff08;AI&#xff09;技术正深刻地改变着我们生活与工作方式的方方面面。作为AI领域的创新者与领航者&#xff0c;云平台始终走在技术前沿&#xff0c;凭借无穷的热情…

自然语言处理:文本规范化

介绍 大家好&#xff01;很高兴又能在这儿和大家分享自然语言处理相关的知识了。在上一篇发布于自然语言处理&#xff1a;初识自然语言处理-CSDN博客为大家初步介绍了自然语言处理的基本概念。而这次&#xff0c;我将进一步深入这个领域&#xff0c;和大家聊聊自然语言处理中一…

HTTP非流式请求 vs HTTP流式请求

文章目录 HTTP 非流式请求 vs 流式请求一、核心区别 服务端代码示例&#xff08;Node.js/Express&#xff09;非流式请求处理流式请求处理 客户端请求示例非流式请求&#xff08;浏览器fetch&#xff09;流式请求处理&#xff08;浏览器fetch&#xff09; Python客户端示例&…

C语言机试编程题

编写版本&#xff1a;vc2022 1.求最大/小值 #include<stdio.h> int main(){int a[50],n;int max, min;printf("请输入您要输入几个数");scanf_s("%d", &n);printf("请输入您要比较的%d个数\n",n);for (int i 0; i<n; i) {scanf_…

c++ 多个.cpp文件运行

目录 方法 1&#xff1a;将其他文件中的 main 改为普通函数 方法 2&#xff1a;使用头文件组织代码 方法 3&#xff1a;条件编译&#xff08;仅用于调试或特殊需求&#xff09; 方法 4&#xff1a;创建类或命名空间管理逻辑 在一个C项目中&#xff0c;多个.cpp文件不能同…

基于OFDR的层压陆相页岩油储层中非对称裂缝群传播的分布式光纤监测

关键词&#xff1a;OFDR、分布式光纤传感、裂缝传播 一. 概述 四川盆地凉高山组优质页岩油储层存在复杂的垂直重叠岩性&#xff0c;大陆页岩油储层存在发育层理&#xff0c;薄层和天然裂缝&#xff0c;对水平井多级压裂技术的裂缝网络形态控制和监测构成挑战。本研究提出了一…

UniApp 按钮组件 open-type 属性详解:功能、场景与平台差异

文章目录 引言一、open-type 基础概念1.1 核心作用1.2 通用使用模板 二、主流 open-type 值详解2.1 contact - 客服会话功能说明平台支持代码示例 2.2 share - 内容转发功能说明平台支持注意事项 2.3 getUserInfo - 获取用户信息功能说明平台支持代码示例 2.4 getPhoneNumber -…

【大模型】Ubuntu下 fastgpt 的部署和使用

前言 本次安装的版本为 fastgpt:v4.8.8-fix2。 最新版本fastgpt:v4.8.20-fix2 问答时报错&#xff0c;本着跑通先使用起来&#xff0c;就没有死磕下去&#xff0c;后面bug解了再进行记录。   github连接&#xff1a;https://github.com/labring/FastGPT fastgpt 安装说明&…