ML.NET库学习005:基于机器学习的客户细分实现与解析

文章目录

  • ML.NET库学习005:基于机器学习的客户细分实现与解析
    • 项目主要目的和原理
      • 目的
      • 原理
    • 项目概述
      • 实现的主要功能
      • 主要流程步骤
      • 使用的主要函数方法
      • 关键技术
    • 主要功能和步骤
      • 功能详细解读
      • 详细步骤解析
    • 数据集及其处理步骤
      • 数据集处理步骤
      • 关键处理步骤原理
        • 1. 数据清洗与预处理
        • 2. 特征工程
        • 3. 数据可视化
        • 4. 预测模型构建
    • 总结
      • 意义
      • 改进方向

ML.NET库学习005:基于机器学习的客户细分实现与解析

项目主要目的和原理

目的

本项目的目的是通过机器学习技术对客户进行细分,以便企业能够根据不同的客户群体制定差异化的营销策略。通过对客户的消费行为数据进行分析,识别出具有相似特征的不同客户群。

原理

  1. 数据预处理:将原始交易数据和优惠信息数据转化为适合聚类分析的格式。
  2. 特征工程
    • 使用主成分分析(PCA)对高维特征进行降维。
    • 对类别变量进行One-Hot编码,将其转换为数值型数据。
  3. 模型训练:使用K-means算法进行无监督学习,将客户划分为若干个簇。
  4. 模型评估与保存:对模型的聚类效果进行评估,并将训练好的模型持久化保存。

项目概述

实现的主要功能

  1. 数据预处理和格式转换。
  2. 特征工程:
    • PCA降维。
    • One-Hot编码。
  3. K-means聚类模型的训练与评估。
  4. 模型的持久化保存。

主要流程步骤

  1. 数据加载:从CSV文件中读取交易数据和优惠信息数据。
  2. 数据预处理:将原始数据转化为适合聚类分析的格式(Pivot Table)。
  3. 特征工程
    • 使用PCA对高维特征进行降维。
    • 对类别变量(如客户姓名)进行One-Hot编码。
  4. 模型训练:使用K-means算法对处理后的数据进行聚类。
  5. 模型评估:计算并输出聚类效果的评估指标。
  6. 模型保存:将训练好的模型保存为ZIP文件。

使用的主要函数方法

  • DataHelpers.PreProcessAndSave:用于数据预处理和格式转换。
  • MLContext.Data.LoadFromTextFile:用于加载CSV文件中的数据。
  • ProjectToPrincipalComponents:用于PCA降维。
  • OneHotEncoding:用于对类别变量进行编码。
  • KMeans:用于训练聚类模型。

关键技术

  1. 主成分分析(PCA):一种常用的降维技术,用于减少数据的维度同时保留主要信息。
  2. One-Hot编码:将类别变量转换为数值型向量的技术。
  3. K-means算法:一种经典的无监督学习算法,用于聚类任务。

主要功能和步骤

功能详细解读

  1. 数据预处理
    • 将原始交易数据和优惠信息数据进行整合,生成适合聚类分析的Pivot Table格式。
  2. 特征工程
    • PCA降维:将高维的连续型特征(如交易金额、频率等)降维至二维空间。
    • One-Hot编码:将类别变量(如客户姓名)转换为数值型向量,以便模型能够处理。
  3. K-means聚类
    • 使用K-means算法将客户划分为若干个簇,每个簇代表一组具有相似特征的客户。
  4. 模型评估与保存
    • 计算并输出聚类效果的评估指标(如轮廓系数)。
    • 将训练好的模型持久化保存为ZIP文件,以便后续使用。

详细步骤解析

  1. 数据加载与预处理
    string relativePath = @"..\..\..\data";
    string fullPath = GetAbsolutePath(relativePath);// 加载交易数据和优惠信息数据
    string offersCsvPath = Path.Combine(fullPath, "offers.csv");
    string transactionsCsvPath = Path.Combine(fullPath, "transactions.csv");// 生成Pivot Table格式的数据
    DataHelpers.PreProcessAndSave(transactionsCsvPath, offersCsvPath, pivotCsvPath);
    
  2. 数据加载与特征工程
    var context = new MLContext();// 加载Pivot Table格式的数据
    IDataView data = context.Data.LoadFromTextFile<PivotData>(pivotCsvPath, hasHeader: true);// PCA降维
    IEstimator<ITransformer> pcaPipeline = context.Transforms.Pca("Features", "PCAFeatures", 2);// One-Hot编码
    IEstimator<ITransformer> oneHotPipeline = context.Transforms.OneHotEncoding("LastName");// 特征工程 pipeline
    var featurePipeline = pcaPipeline.Append(oneHotPipeline);
    
  3. 模型训练与评估
    // 使用K-means算法进行聚类
    IEstimator<ITransformer> clusteringPipeline = context.Clustering.Trainers.KMeans("Cluster", "Features", numberOfClusters: 3);// 训练模型
    ITransformer model = featurePipeline.Append(clusteringPipeline).Fit(data);// 预测并评估
    var predictions = model.Transform(data);
    var metrics = context.Clustering.Evaluate(predictions);
    
  4. 模型保存
    string modelName = "customer_clustering_model.zip";
    context.Model.Save(model, data.Schema, modelName);
    

数据集及其处理步骤

Offer #,Campaign,Varietal,Minimum Qty (kg),Discount (%),Origin,Past Peak1,January,Malbec,72,56,France,FALSE2,January,Pinot Noir,72,17,France,FALSE3,February,Espumante,144,32,Oregon,TRUE4,February,Champagne,72,48,France,TRUE5,February,Cabernet Sauvignon,144,44,New Zealand,TRUE6,March,Prosecco,144,86,Chile,FALSE7,March,Prosecco,6,40,Australia,TRUE8,March,Espumante,6,45,South Africa,FALSE9,April,Chardonnay,144,57,Chile,FALSE10,April,Prosecco,72,52,California,FALSE11,May,Champagne,72,85,France,FALSE12,May,Prosecco,72,83,Australia,FALSE13,May,Merlot,6,43,Chile,FALSE14,June,Merlot,72,64,Chile,FALSE15,June,Cabernet Sauvignon,144,19,Italy,FALSE16,June,Merlot,72,88,California,FALSE17,July,Pinot Noir,12,47,Germany,FALSE18,July,Espumante,6,50,Oregon,FALSE19,July,Champagne,12,66,Germany,FALSE20,August,Cabernet Sauvignon,72,82,Italy,FALSE21,August,Champagne,12,50,California,FALSE22,August,Champagne,72,63,France,FALSE23,September,Chardonnay,144,39,South Africa,FALSE24,September,Pinot Noir,6,34,Italy,FALSE25,October,Cabernet Sauvignon,72,59,Oregon,TRUE26,October,Pinot Noir,144,83,Australia,FALSE27,October,Champagne,72,88,New Zealand,FALSE28,November,Cabernet Sauvignon,12,56,France,TRUE29,November,Pinot Grigio,6,87,France,FALSE30,December,Malbec,6,54,France,FALSE31,December,Champagne,72,89,France,FALSE32,December,Cabernet Sauvignon,72,45,Germany,TRUE

数据集中的关键字段(如Campaign、Varietal、Minimum Qty (kg)、Discount (%)等),我们可以对葡萄酒销售数据进行深入分析,以揭示数据背后的模式、趋势和潜在价值。帮助企业优化库存管理、制定促销策略,并为市场营销提供数据支持。

数据集处理步骤

  1. 实现的主要功能

    • 数据清洗与预处理:处理缺失值和异常值。
    • 特征工程:提取关键特征,如旺季/淡季判断、葡萄酒类型分布等。
    • 数据分析建模:使用统计方法和机器学习算法进行数据建模与预测。
  2. 主要流程步骤

    1. 数据加载与预处理。
    2. 特征提取与工程化。
    3. 数据可视化与描述性分析。
    4. 预测模型构建与验证(如折扣率预测)。

关键处理步骤原理

1. 数据清洗与预处理
  • 目的:确保数据质量,为后续分析打下基础。
  • 实现步骤
    • 检查缺失值:使用isnull()方法判断是否有缺失值。
    • 处理异常值:通过统计方法(如四分位数)识别并处理异常值。
    • 数据类型转换:将非数值型字段(如Campaign、Varietal)进行编码处理。
2. 特征工程
  • 目的:提取对业务有价值的关键特征,提升模型性能。
  • 实现步骤
    • 时间相关特征:从Campaign中提取月份信息,判断是否为销售旺季。
    • 数量与折扣关系:分析Minimum Qty (kg)和Discount (%)之间的关系。
    • 品种分布:统计各葡萄酒品种的销量占比。
3. 数据可视化
  • 目的:直观展示数据特征,帮助业务人员理解数据背后的趋势。
  • 实现步骤
    • 销售量与折扣的关系:绘制散点图或折线图。
    • 品种分布:使用柱状图展示各品种的销售占比。
    • 时间序列分析:绘制销量随时间的变化趋势。
4. 预测模型构建
  • 目的:基于历史数据预测未来的折扣率或销量,辅助企业制定促销策略。
  • 实现步骤
    • 数据集划分:将数据划分为训练集和测试集。
    • 模型选择:尝试线性回归、随机森林等算法。
    • 模型评估:使用均方误差(MSE)、R²等指标评估模型性能。

总结

本项目通过机器学习技术实现了客户细分功能,主要使用了PCA降维、One-Hot编码和K-means聚类等关键技术。整个流程包括数据预处理、特征工程、模型训练与评估以及模型保存。

意义

  • 精准营销:通过对客户的细分,企业可以针对不同群体制定差异化的营销策略。
  • 客户洞察:帮助企业更好地理解客户的行为模式和需求。

改进方向

  1. 数据增强:引入更多维度的客户行为数据(如地理位置、时间戳等)。
  2. 模型调优:通过网格搜索或随机搜索优化K-means算法的超参数(如簇的数量)。
  3. 可视化分析:对聚类结果进行可视化分析,帮助业务人员更直观地理解客户群体。

通过不断优化和改进,该系统可以更好地支持企业的精准营销决策,提升客户满意度和企业收益。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/69933.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

webpack打包优化策略

1. 减少打包体积 减少打包文件的大小是为了提高加载速度&#xff0c;降低网络带宽消耗&#xff0c;提升用户体验。常见的减少打包体积的优化策略包括&#xff1a; 代码分割&#xff08;Code Splitting&#xff09;&#xff1a;将代码拆分成多个小文件&#xff0c;让浏览器按需…

RocketMQ与kafka如何解决消息积压问题?

前言 消息积压问题简单来说&#xff0c;就是MQ存在了大量没法快速消费完的数据&#xff0c;造成消息积压的原因主要在于“进入的多&#xff0c;消费的少”&#xff0c;或者生产的速度过快&#xff0c;而消费速度赶不上&#xff0c;基于这一问题&#xff0c;我们主要介绍如何通过…

RISC-V平台编译 state-thread x264 ffmpeg zlog

1.state-threads 源码下来之后 直接 make linux-debug 目录下生成了对应的.a 和 .h文件 gcc test.c -o test -l st -L . #include <stdio.h> #include <stdlib.h> #include <string.h> #include <errno.h> #include <sys/socket.h&g…

用easyExcel如何实现?

要使提供的 ExcelModelListener 类来解析 Excel 文件并实现批量存储数据库的功能&#xff0c;需要结合 EasyExcel 库来读取 Excel 数据。具体来说&#xff0c;可以使用 EasyExcel.read() 方法来读取 Excel 文件&#xff0c;并指定 ExcelModelListener 作为事件监听器。 下面是…

BUU37 [DASCTF X GFCTF 2024|四月开启第一局]web1234【代码审计/序列化/RCE】

Hint1&#xff1a;本题的 flag 不在环境变量中 Hint2&#xff1a;session_start&#xff08;&#xff09;&#xff0c;注意链子挖掘 题目&#xff1a; 扫描出来www.zip class.php <?phpclass Admin{public $Config;public function __construct($Config){//安全获取基…

Mysql中使用sql语句生成雪花算法Id

&#x1f353; 简介&#xff1a;java系列技术分享(&#x1f449;持续更新中…&#x1f525;) &#x1f353; 初衷:一起学习、一起进步、坚持不懈 &#x1f353; 如果文章内容有误与您的想法不一致,欢迎大家在评论区指正&#x1f64f; &#x1f353; 希望这篇文章对你有所帮助,欢…

Go框架面试突击!30道高频题解析

前言 有粉丝朋友问我能不能整理Go主流框架方面的面试题&#xff0c;安排&#xff01; 这篇文章分享了gRPC、GoFrame、GoZero、GoMicro、GORM、Gin等主流框架的30道面试题和详解。 需要大厂面经的朋友们也可以直接加我好友&#xff0c;私信我。 gRPC 1.gRPC是什么&#xff…

@JsonRawValue 注解

这里写目录标题 1. 问题2. JsonRawValue 注解说明 1. 问题 在实际开发中我遇到这样一个问题&#xff0c;查询数据库的结果返回的content内容是含有转移符的JSON字符串&#xff0c;但是我需要返回的不包含转移的String字符串。经过我一顿折腾并未发现解决办法&#xff0c;直到J…

node.js+兰空图床实现随机图

之前博客一直用的公共的随机图API&#xff0c;虽然图片的质量都挺不错的&#xff0c;但是稳定性都比较一般&#xff0c;遂打算使用之前部署的兰空图床&#xff0c;自己弄一个随机图 本文章服务器操作基于雨云——新一代云服务提供商的云服务器进行操作&#xff0c;有兴趣的话可…

MySQL binlog的三种模式

MySQL 的 binlog&#xff08;Binary Log&#xff09; 默认的模式是 STATEMENT&#xff0c;即 语句模式。在这种模式下&#xff0c;MySQL 会记录所有对数据库执行的数据修改操作&#xff08;如 INSERT、UPDATE、DELETE 等&#xff09;的 SQL 语句。 1. binlog 的三种模式 MySQL…

25农村发展研究生复试面试问题汇总 农村发展专业知识问题很全! 农村发展复试全流程攻略 农村发展考研复试真题汇总

农村发展复试当然有好的建议&#xff01;前提是复试重点面试题背好&#xff01; 你是不是也在为农村发展考研复试发愁&#xff1f;担心自己准备不充分、表现不好&#xff1f;别急&#xff01;今天&#xff0c;学姐——复试面试拿下90分成功上岸的学姐&#xff0c;来给大家分享…

读取本地excel并生成map,key为第一列,value为第二列

添加依赖&#xff1a;在 pom.xml 文件中添加以下依赖&#xff1a; <dependencies><dependency><groupId>org.apache.poi</groupId><artifactId>poi</artifactId><version>5.2.3</version></dependency><dependency&…

代码随想录算法【Day44】

Day44 1143.最长公共子序列 class Solution { public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>> dp(text1.size() 1, vector<int>(text2.size() 1, 0));for (int i 1; i < text1.size(); i) {for (int j 1; …

【transformers.Trainer填坑】在自定义compute_metrics时logits和labels数据维度不一致问题

问题描述 我在使用 transformers.Trainer 训练我的模型时&#xff0c;我自定义了 compute_loss 函数和compute_metrics函数&#xff0c;我的模型是一个简单的二分类模型。 在自定义 compute_loss 时这样写的&#xff1a; def compute_loss(self, model, inputs, return_outp…

论文学习记录之《CLR-VMB》

目录 一、基本介绍 二、介绍 三、方法 3.1 FWI中的数据驱动方法 3.2 CLR-VMB理论 3.3 注意力块 四、网络结构 4.1 网络架构 4.2 损失函数 五、实验 5.1 数据准备 5.2 实验设置 5.3 训练和测试 5.4 定量分析 5.5 CLR方案的有效性 5.6 鲁棒性 5.7 泛化性 六、讨…

【STM32】舵机SG90

1.舵机原理 舵机内部有一个电位器&#xff0c;当转轴随电机旋转&#xff0c;电位器的电压会发生改变&#xff0c;电压会带动转一定的角度&#xff0c;舵机中的控制板就会电位器输出的电压所代表的角度&#xff0c;与输入的PWM所代表的角度进行比较&#xff0c;从而得出一个旋转…

算法刷题-链表系列-移除链表、设计链表、翻转列表

题目要求 所有主要考察对链表的增删查改的功能 总结 对于有些从头遍历到尾的方法&#xff0c;创建一个头结点使得所有的结点能以统一的方式且全部被遍历到&#xff0c;不会出现头结点不被遍历的问题。对于遍历的条件&#xff0c;有的时候curNode ! nullptr&#xff0c;有的时…

Django项目中创建app并快速上手(pycharm Windows)

1.打开终端 我选择的是第二个 2.运行命令 python manage.py startapp 名称 例如&#xff1a; python manage.py startapp app01 回车&#xff0c;等待一下&#xff0c;出现app01的文件夹说明创建成功 3.快速上手 1.app注册 增加一行 "app01.apps.App01Config"&#…

Windows系统安装搭建悟空crm客户管理系统 教程

1、在安装悟空 CRM 之前&#xff0c;需要确保你的 Windows 系统上已经安装了以下软件&#xff1a; Web 服务器&#xff1a;推荐使用 Apache 或 Nginx&#xff0c;这里以 Nginx 为例。你可以使用集成环境套件如 XAMPP 来简化安装过程&#xff0c;它包含了 Nginx 、MySQL、PHP 等…

深度学习框架探秘|TensorFlow vs PyTorch:AI 框架的巅峰对决

在深度学习框架中&#xff0c;TensorFlow 和 PyTorch 无疑是两大明星框架。前面两篇文章我们分别介绍了 TensorFlow&#xff08;点击查看&#xff09; 和 PyTorch&#xff08;点击查看&#xff09;。它们引领着 AI 开发的潮流&#xff0c;吸引着无数开发者投身其中。但这两大框…