QMK启用摇杆和鼠标按键功能

  虽然选择了触摸屏,我仍选择为机械键盘嵌入摇杆模块,这本质上是对"操作连续性"的执着。
  值得深思的是,本次开发过程中借助DeepSeek的代码生成与逻辑推理,其展现的能力已然颠覆传统编程范式,需求描述可自动转化为功能实现,算法优化能自主完成多目标博弈,这昭示着技术生产关系的根本性变革。
  技术演进正在重构价值坐标系,边缘计算设备通过蒸馏更好的模型实现端侧智能,使AI能力呈指数级渗透产业格局,算力资本形成的新型生产资料,正在重塑技术话语权分配机制,工程师的核心竞争力将从代码实现转向需求抽象、系统架构与伦理把控在这场人机协同的认知革命,真正的危机并非技术替代,而是思维范式的停滞。
  当AI解构了执行层的技术壁垒,人类智慧的战场必将向更高维度迁移——那些涉及跨领域创新、价值判断与复杂系统设计的领域,正是技术人亟待开垦的新边疆,但愿技术人可以在这样的狭缝中获得存在的意义。
  言归正传还是回到我们的QMK键盘增加摇杆功能,首先要了解一下QMK 生成键盘的整体文件结构:
qmk_firmware/keyboards/demo_keyboard/
├── config.h
├── keymaps/
│ └── default/
│ ├── keymap.c
├── rules.mk
└── keyboard.json
keyboard.json功能:定义键盘的硬件配置、布局、功能和元数据。示例
rules.mk功能:定义编译选项和功能开关。
config.h功能:定义键盘的硬件配置和宏。
keymaps/default/keymap.c功能:定义默认键位布局,开启自定义功能。

所以增加摇杆和鼠标就需要在这些文件里面进行修改

在rules.mk中启用摇杆和鼠标按键功能

POINTING_DEVICE_ENABLE = yes
POINTING_DEVICE_DRIVER = analog_joystick
MOUSEKEY_ENABLE = yes
# DEBUG_ENABLE = yes
# CONSOLE_ENABLE = yes  # 启用调试输出

在config.h中添加摇杆和鼠标键的读取对应端口

/*
Copyright 2025 <JohnsonLv>This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/#pragma once#define ANALOG_JOYSTICK_X_AXIS_PIN GP26
#define ANALOG_JOYSTICK_Y_AXIS_PIN GP27
#define MOUSE_BTN1_PIN GP15

在keymap.c中添加,保留以前的键盘键的映射,然后添加一些关于摇杆的函数

/// Copyright 2023 QMK
// SPDX-License-Identifier: GPL-2.0-or-later#pragma once#include QMK_KEYBOARD_H
#include "pointing_device.h"
#include "print.h"
#include "timer.h"  // 用于 timer_read32 和 timer_elapsed32// 定义摇杆的灵敏度
#define JOYSTICK_SENSITIVITY 1static bool debounce = false;
static uint32_t debounce_timer = 0;// 初始化独立按键的 GPIO
void keyboard_post_init_user(void) {setPinInputHigh(MOUSE_BTN1_PIN);  // 设置为输入模式,启用内部上拉电阻
}// 新增参数定义(需根据实际需求调整)
#define MAX_CURSOR_SPEED  10  // 最大光标速度
#define SPEED_REGULATOR    3   // 速度调节系数// 非线性映射函数(基于 IBM 专利逻辑)
void joystick_ibm_algorithm(int16_t x, int16_t y, int16_t* x_out, int16_t* y_out) {static int16_t z_prev = 0;  // 静态变量保存上一次的 z 值// --- 核心算法逻辑 ---// 1. 计算近似平方根的 z 值int16_t ax = abs(x);int16_t ay = abs(y);int16_t z = ax + ay - ((2 * (ax < ay ? ax : ay)) / 3);// 2. 动态调整光标移动if (z > 4) {// 计算动态变化的 zi 值(包含释放补偿)int16_t zi = (z - z_prev) * 6 + z;// 计算最终坐标(避免除以零)int16_t x_calc = (zi == 0) ? 0 : (x * z * MAX_CURSOR_SPEED) / (zi * SPEED_REGULATOR);int16_t y_calc = (zi == 0) ? 0 : (y * z * MAX_CURSOR_SPEED) / (zi * SPEED_REGULATOR);*x_out = x_calc;*y_out = y_calc;} else {*x_out = 0;*y_out = 0;}// 3. 保存当前 z 值供下次使用z_prev = z;
}// 处理独立按键和摇杆的函数
void my_process_joystick(void) {// 获取摇杆的 X/Y 轴值int16_t x_raw= joystick_state.axes[0];int16_t y_raw= joystick_state.axes[1];// 创建鼠标报告report_mouse_t mouse_report = {0};// 应用 IBM 算法int16_t x_mapped, y_mapped;joystick_ibm_algorithm(x_raw, y_raw, &x_mapped, &y_mapped);// 检测独立按键状态(按下时为低电平)bool btn_state = !readPin(MOUSE_BTN1_PIN);  // 按下时为 true// 消抖逻辑if (btn_state && !debounce) {debounce = true;debounce_timer = timer_read32();mouse_report.buttons |= KC_BTN1;  // 触发左键} else if (!btn_state && debounce) {if (timer_elapsed32(debounce_timer) > 5) {  // 消抖时间 5msdebounce = false;mouse_report.buttons &= ~KC_BTN1;  // 释放左键}}// 发送鼠标报告pointing_device_set_report(mouse_report);pointing_device_send();
}// 键盘矩阵扫描后的钩子函数
void matrix_scan_user(void) {my_process_joystick();
}// 键盘布局定义(无需为独立按键分配矩阵键位)
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {[0] = LAYOUT_numpad_4x4(KC_1,   KC_2,   KC_3,   KC_4,KC_5,   KC_6,   KC_7,   KC_8,KC_9,   KC_0,   KC_A,   KC_B,KC_C,   KC_D,   KC_BTN2, KC_BTN3  // 保持矩阵中的键位不变)
};

  在上面的这段算法中借用了 https://patents.google.com/patent/US5570111A, IBM的一个专利技术

以下是这段基于 IBM 专利的摇杆算法的逐层解析,我将用 「物理直觉 → 数学实现 → 代码表达」 的逻辑链解释其精妙之处:

1. 近似矢量长度(模拟平方根)物理需求:

需要计算摇杆偏移的「矢量长度」,但避免耗时的真实平方根运算。数学实现:
通过线性组合近似替代 x 2 + y 2 \sqrt{x² + y²} x2+y2 ,专利给出的公式: z = ∣ x ∣ + ∣ y ∣ − ( 2 ∗ m i n ( ∣ x ∣ , ∣ y ∣ ) ) / 3 z = |x| + |y| - (2 * min(|x|, |y|)) / 3 z=x+y(2min(x,y))/3
代码实现:

int16_t ax = abs(x);
int16_t ay = abs(y);
int16_t z = ax + ay - ((2 * (ax < ay ? ax : ay)) / 3);

效果说明:当摇杆沿对角线移动时(x=y),公式简化为 ( 4 / 3 ) ∗ x (4/3) * x (4/3)x,接近真实平方根 2 ∗ x ≈ 1.414 x \sqrt2*x ≈ 1.414x 2 x1.414x当摇杆沿单轴移动时(如 x=0),公式退化为 y,与真实值一致平衡了计算效率和准确性


2. 动态响应补偿(预测释放动作)

物理需求
当用户松开摇杆时,光标会因惯性继续移动,需要模拟「减速回弹」效果。

数学实现
通过差分计算摇杆速度变化:
z i = z + 6 ∗ ( z − z p r e v ) zi = z + 6*(z - z_{prev}) zi=z+6(zzprev)
z p r e v z_{prev} zprev是上一帧的 z 值)

代码实现

int16_t zi = (z - z_prev) * 6 + z; // 放大变化量的影响

效果说明

  • 快速释放时(z 急剧减小): z i zi zi会远小于 z z z,导致 x c a l c / y c a l c x_{calc}/y_{calc} xcalc/ycalc分母增大,光标减速
  • 保持摇杆时(z 稳定): z i ≈ z zi ≈ z ziz,光标匀速移动
  • 推动摇杆时(z 增大): z i > z zi > z zi>z,分母增大,光标加速更平缓

3. 非线性速度映射

物理需求
摇杆偏移量与光标速度呈非线性关系(小偏移精细控制,大偏移快速移动)。

数学实现
速度公式:

x_calc = (x * z * MAX_CURSOR_SPEED) / (zi * SPEED_REGULATOR)

代码实现

int16_t x_calc = (zi == 0) ? 0 : (x * z * MAX_CURSOR_SPEED) / (zi * SPEED_REGULATOR);

参数控制

参数作用调整建议
MAX_CURSOR_SPEED最大移动速度值越大光标移动越快
SPEED_REGULATOR整体灵敏度调节值越大光标移动越慢
6 (zi的系数)惯性响应强度值越大释放时的减速越明显

4. 死区处理与噪声过滤

物理需求
消除摇杆中心位置的微小抖动。

数学实现
z ≤ 4 时强制归零:

if (z > 4) { ... } else { *x_out=0; *y_out=0; }

效果说明

  • 过滤摇杆电阻器的噪声
  • 提供明确的中心死区

整体算法流程图

原始输入 (x,y)  ↓  
计算近似矢量长度 z  ↓  
动态补偿 → 计算 zi (包含惯性预测)  ↓  
非线性映射 → 输出 (x_calc, y_calc)  ↓  
保存 z 值 → 供下一帧使用

实际调试技巧

  1. 参数联动调整

    • 先固定 SPEED_REGULATOR=1,调整 MAX_CURSOR_SPEED 确定最大速度
    • 然后增大 SPEED_REGULATOR 微调灵敏度
    • 最后调整 zi 的系数(代码中的 6)控制惯性效果
  2. 边界保护
    添加范围限制防止溢出:

  x_calc = MAX(-127, MIN(x_calc, 127)); // 确保在鼠标协议范围内

这个算法通过巧妙的近似和差分计算,在极低的计算开销下实现了符合人体工学的光标控制特性,正是这种「用简单数学模拟复杂物理直觉」的设计,让它成为经典。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/69262.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt的QTableWidget类的声明定义和使用

QTableWidget类的声明定义 QTableWidget 是 Qt 框架中的一个类&#xff0c;它继承自 QAbstractItemView 并提供了用于显示和操作二维表格数据的接口。这个类不是由用户直接声明的&#xff0c;而是由 Qt 库提供的。你可以在你的 Qt 应用程序中通过包含相应的头文件来使用它。 …

Linux里的容器被OOM killed的两种情况

生产上遇到过几次容器实例被OOM的现象&#xff0c;总结一下LInux OOM的两种触发条件。我的虚拟机是ubuntu 24.0.4版本&#xff0c;分配4G内存&#xff0c;在我的虚拟机上复现这两种case。 一 宿主机物理内存不够 当linux上所有应用程序的内存需求加起来超出了物理内存&#x…

使用Express.js和SQLite3构建简单TODO应用的后端API

使用Express.js和SQLite3构建简单TODO应用的后端API 引言环境准备代码解析1. 导入必要的模块2. 创建Express应用实例3. 设置数据库连接4. 初始化数据库表5. 配置中间件6. 定义数据接口7. 定义路由7.1 获取所有TODO项7.2 创建TODO项7.3 更新TODO项7.4 删除TODO项 8. 启动服务器 …

Windows本地部署DeepSeek-R1大模型并使用web界面远程交互

文章目录 前言1. 安装Ollama2. 安装DeepSeek-r1模型3. 安装图形化界面3.1 Windows系统安装Docker3.2 Docker部署Open WebUI3.3 添加Deepseek模型 4. 安装内网穿透工具5. 配置固定公网地址 前言 最近爆火的国产AI大模型Deepseek详细大家都不陌生&#xff0c;不过除了在手机上安…

低代码开发与传统开发:未来的技术路线选择

在科技飞速发展的当下&#xff0c;软件开发技术日新月异&#xff0c;低代码开发与传统开发作为两种重要的开发模式&#xff0c;正站在未来技术路线选择的十字路口&#xff0c;引发了众多企业和开发者的关注。它们各自有着独特的优势和适用场景&#xff0c;究竟该如何抉择&#…

二、0-1搭建springboot+vue3前后端分离-登录页面

项目仓库地址&#xff1a;zgw-admin: 从0-1搭建一个springbootvue3的项目&#xff0c;这是源码 本次主要是为了&#xff1a; a.写登录页面 b.element plus组件是否能正常使用 c.页面调用ts是否正常&#xff0c;无参和有参的函数 首页的图片&#xff1a; 页面效果 1、引入…

《翻转组件库之发布》

背景 继《翻转组件库之打包》_杨晓风-linda的博客-CSDN博客之后&#xff0c;组件库已经可以正常构建&#xff0c;那如何像elementUI等组件库那样&#xff0c;用npm安装&#xff0c;按照既定的用法使用即可呢&#xff1f;本篇便为你揭晓 资料相关 1、npm官方文档&#xff1a;…

Spring Task之Cron表达式

&#x1f31f; Spring Task高能预警&#xff1a;你以为的Cron表达式可能都是错的&#xff01;【附实战避坑指南】 开篇暴击&#xff1a;为什么你的定时任务总在凌晨3点翻车&#xff1f; “明明设置了0 0 2 * * ?&#xff0c;为什么任务每天凌晨3点执行&#xff1f;” —— 来…

web-JSON Web Token-CTFHub

前言 在众多的CTF平台当中&#xff0c;作者认为CTFHub对于初学者来说&#xff0c;是入门平台的不二之选。CTFHub通过自己独特的技能树模块&#xff0c;可以帮助初学者来快速入门。具体请看官方介绍&#xff1a;CTFHub。 作者更新了CTFHub系列&#xff0c;希望小伙伴们多多支持…

如何在 Kafka 中实现自定义分区器

今天我来给大家分享一下如何在 Kafka 中实现一个自定义分区器。Kafka 是一个分布式流处理平台&#xff0c;能够高效地处理海量数据。默认情况下&#xff0c;Kafka 使用键的哈希值来决定消息应该发送到哪个分区&#xff0c;但是有时我们需要根据特定的业务逻辑来定制分区策略。这…

【FPGA】 MIPS 12条整数指令【2】

目录 实现slt 仿真 代码 完整代码 ID.v DataMem.v define.v EX.v IF.v InstMem.v MEM.v MIPS.v RegFile.v Soc.v soc_tb.v 实现slt 仿真 ori r1,r0,1100h ori r2,r0,0020h ori r3,r0,ff00h ori r4,r0,ffffh addi r5,r0,ffff slt r6,r5,r4 slt r6,r4,r…

MySQL 进阶专题:索引(索引原理/操作/优缺点/B+树)

在数据库的秋招面试中&#xff0c;索引&#xff08;Index&#xff09;是一个经典且高频的题目。索引的作用类似于书中的目录&#x1f4d6;&#xff0c;它能够显著加快数据库查询的速度。本文将深入探讨索引的概念、作用、优缺点以及背后的数据结构&#xff0c;帮助你从原理到应…

nginx目录结构和配置文件

nginx目录结构 [rootlocalhost ~]# tree /usr/local/nginx /usr/local/nginx ├── client_body_temp # POST 大文件暂存目录 ├── conf # Nginx所有配置文件的目录 │ ├── fastcgi.conf # fastcgi相关参…

vue-router 有哪几种导航钩子?

在 Vue Router 中,导航钩子(Navigation Guards)用于控制路由的进入和离开,可以在路由变化的不同阶段执行逻辑。Vue Router 提供了多种类型的导航钩子,主要包括以下几种: 一、全局导航钩子 全局导航钩子在路由实例上定义,适用于所有路由的导航。 beforeEach在每次路由切…

信息学奥赛一本通 2101:【23CSPJ普及组】旅游巴士(bus) | 洛谷 P9751 [CSP-J 2023] 旅游巴士

【题目链接】 ybt 2101&#xff1a;【23CSPJ普及组】旅游巴士(bus) 洛谷 P9751 [CSP-J 2023] 旅游巴士 【题目考点】 1. 图论&#xff1a;求最短路Dijkstra, SPFA 2. 动态规划 3. 二分答案 4. 图论&#xff1a;广搜BFS 【解题思路】 解法1&#xff1a;Dijkstra堆优化 …

C基础寒假练习(6)

一、终端输入行数&#xff0c;打印倒金字塔 #include <stdio.h> int main() {int rows;printf("请输入倒金字塔的行数: ");scanf("%d", &rows);for (int i rows; i > 0; i--) {// 打印空格for (int j 0; j < rows - i; j) {printf(&qu…

vim modeline

1. 什么是 Vim 模型行&#xff08;modeline&#xff09;&#xff1f; Vim 模型行是嵌入在文件中的特殊注释行&#xff0c;用于告诉 Vim 编辑器如何配置编辑选项。它的语法格式如下&#xff1a; # vim: 选项1值1:选项2值2:...它以 # vim: 开头&#xff08;# 是注释符&#xff…

【C# 】图像资源的使用

在C#中&#xff0c;图像资源的使用方式方法主要依赖于你所使用的框架和库。以下是几种常见的使用图像资源的方法&#xff1a; Windows Forms 直接加载图像&#xff1a; 使用System.Drawing.Image.FromFile()方法可以直接从文件系统加载图像。 Image image Image.FromFile(&qu…

OpenGL学习笔记(六):Transformations 变换(变换矩阵、坐标系统、GLM库应用)

文章目录 向量变换使用GLM变换&#xff08;缩放、旋转、位移&#xff09;将变换矩阵传递给着色器坐标系统与MVP矩阵三维变换绘制3D立方体 & 深度测试&#xff08;Z-buffer&#xff09;练习1——更多立方体 现在我们已经知道了如何创建一个物体、着色、加入纹理。但它们都还…

java后端开发面试常问

面试常问问题 1 spring相关 &#xff08;1&#xff09;Transactional失效的场景 <1> Transactional注解默认只会回滚运行时异常&#xff08;RuntimeException&#xff09;&#xff0c;如果方法中抛出了其他异常&#xff0c;则事务不会回滚&#xff08;数据库数据仍然插…