ROS应用之SwarmSim在ROS 中的协同路径规划

 SwarmSim 在 ROS 中的协同路径规划


前言

在多机器人系统(Multi-Robot Systems, MRS)中,SwarmSim 是一个常用的模拟工具,可以对多机器人进行仿真以实现复杂任务的协同。除了任务分配逻辑以外,SwarmSim 在协同路径规划方面也具有重要意义。协同路径规划是指多机器人在同一环境中找到彼此不发生冲突的最优路径,以完成各自的目标任务。本文将从理论到实现详细解析 SwarmSim 在协同路径规划中的应用。


原理介绍

1. 基本概念

协同路径规划的核心在于 避免冲突优化路径

  • 避免冲突:确保机器人不会因路径交叉而发生碰撞。

  • 优化路径:基于最短路径、最小时间消耗或其他优化目标,找到机器人从起点到终点的最佳路线。

在 SwarmSim 中,协同路径规划常基于以下模型:

  • A* 算法:单机器人路径规划的基础。

  • CBS 算法(Conflict-Based Search):解决多机器人冲突的扩展。

  • 时间-空间网络模型:将机器人路径规划扩展到时间维度。

2. 整体流程

SwarmSim 的协同路径规划包括以下步骤:

  1. 环境建模

    • 将机器人运行的空间划分为栅格地图。

    • 地图中每个单元格表示一个可能的机器人位置。

  2. 单机器人路径规划

    • 每个机器人独立计算从起点到终点的最优路径(例如通过 A* 算法)。

  3. 冲突检测

    • 检测多个机器人路径是否存在冲突(例如同时占用同一单元格)。

  4. 冲突解决

    • 若存在冲突,通过 CBS 算法为冲突机器人重新规划路径。

  5. 路径优化

    • 综合考虑路径长度和时间约束,优化整体路径。

3. 关键特点
  • 分布式与集中式协作

    • SwarmSim 支持分布式路径规划(机器人独立决策)和集中式路径规划(统一决策)。

  • 动态环境适应性

    • 在动态环境中,机器人能够根据新出现的障碍物或动态任务重新规划路径。

  • 可扩展性

    • SwarmSim 能够模拟多达数百个机器人的协同路径规划任务。

4. 算法流程

以下为 CBS 算法的基本步骤:

  1. 初始化:

    • 每个机器人独立生成一条无冲突路径。

  2. 冲突检测:

    • 遍历所有机器人路径,记录冲突信息(如时间、位置)。

  3. 冲突分解:

    • 根据冲突信息创建约束,限制机器人使用冲突位置。

    • 重新生成冲突机器人的路径。

  4. 路径优化:

    • 综合路径总长度和其他优化目标,生成最终的路径规划结果。

公式描述如下:

  • 路径总代价:

    其中,N 为机器人总数,Cost(Pi) 表示第 i 个机器人的路径代价。

  • 冲突检测函数:


部署环境介绍

  • 操作系统:Ubuntu 20.04

  • ROS 版本:ROS 2 Humble

  • 依赖工具:

    • SwarmSim

    • RViz(用于可视化)

    • Python 或 C++(用于算法实现)


部署流程

  1. 安装 SwarmSim

    git clone https://github.com/swarm-sim/swarm-sim.git
    cd swarm-sim
    colcon build
    source install/setup.bash
  2. 准备地图文件

    • 使用 YAML 格式定义环境地图:

      resolution: 0.05
      origin: [0.0, 0.0, 0.0]
      occupancy_grid: map.pgm
  3. 启动仿真环境

    ros2 launch swarm_sim launch_simulation.launch.py
  4. 启动协同路径规划节点

    • 运行示例代码,完成机器人路径规划。


代码示例

以下为 CBS 算法的简化实现:

import heapq
​
class CBSPlanner:def __init__(self, robots, environment):self.robots = robotsself.environment = environmentself.open_list = []
​def plan_paths(self):# Step 1: Initialize pathspaths = {robot: self.plan_individual_path(robot) for robot in self.robots}heapq.heappush(self.open_list, (self.calculate_cost(paths), paths, []))return self.resolve_conflicts()
​def plan_individual_path(self, robot):# Basic A* implementation# Returns path for a single robotpass
​def calculate_cost(self, paths):return sum(len(path) for path in paths.values())
​def resolve_conflicts(self):while self.open_list:cost, paths, constraints = heapq.heappop(self.open_list)conflicts = self.detect_conflicts(paths)if not conflicts:return pathsfor conflict in conflicts:new_constraints = constraints + [self.create_constraint(conflict)]new_paths = self.replan_with_constraints(new_constraints)heapq.heappush(self.open_list, (self.calculate_cost(new_paths), new_paths, new_constraints))
​def detect_conflicts(self, paths):# Detect conflicts in the pathspass
​def create_constraint(self, conflict):# Create new constraints based on conflictpass
​def replan_with_constraints(self, constraints):# Replan paths with updated constraintspass

代码解读

1. 初始化路径规划
  • 函数

    plan_individual_path
    • 调用单机器人路径规划算法(如 A*)计算初始路径。

    • 输出为机器人从起点到终点的路径。

2. 冲突检测
  • 函数

    detect_conflicts
    • 遍历所有路径,检测是否存在同时访问同一单元格的情况。

3. 冲突分解
  • 函数

    create_constraint
    • 根据冲突生成约束,例如禁止机器人在特定时间访问某单元格。

4. 路径优化
  • 函数

    calculate_cost
    • 计算当前路径的总代价,用于比较不同路径规划结果的优劣。


运行效果说明

1. 实验环境设置
  • 地图设置:10x10 栅格地图,障碍物随机分布,部分区域设置为高代价区域。

  • 机器人数量:3 台机器人,分别从不同的起点(如 (1,1),(3,5),(8,8))出发,到达各自目标点(如 (9,9),(1,8),(5,3))。

  • 初始路径规划:每台机器人独立运行 A* 算法生成路径,不考虑冲突。

  • 规划目标:消除冲突,最小化路径总长度,同时保持实时性。


2. 实验步骤记录
  1. 运行初始路径规划节点

点击三木地带你手搓ROS应用之SwarmSim在ROS 中的协同路径规划查看全文。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/69016.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MVC、MVP和MVVM模式

MVC模式中,视图和模型之间直接交互,而MVP模式下,视图与模型通过Presenter进行通信,MVVM则采用双向绑定,减少手动同步视图和模型的工作。每种模式都有其优缺点,适合不同规模和类型的项目。 ### MVVM 与 MVP…

【BUUCTF杂项题】后门查杀、webshell后门

前言:Webshell 本质上是一段可在 Web 服务器上执行的脚本代码,通常以文件形式存在于 Web 服务器的网站目录中。黑客通过利用 Web 应用程序的漏洞,如 SQL 注入、文件上传漏洞、命令执行漏洞等,将 Webshell 脚本上传到服务器&#x…

Spring中@Conditional注解详解:条件装配的终极指南

一、为什么要用条件装配? 在实际开发中,我们经常需要根据不同的运行环境、配置参数或依赖情况动态决定是否注册某个Bean。例如: 开发环境使用内存数据库,生产环境连接真实数据库 当存在某个类时才启用特定功能 根据配置文件开关…

【CPP】迭代器失效问题 static和inline

文章目录 迭代器失效**常见的迭代器失效场景**1. **std::vector**2. **std::deque**3. **std::list**4. **std::map / std::set**5. **std::unordered_map / std::unordered_set** **总结:迭代器失效场景****如何避免迭代器失效?** static 和 inline1. s…

visual studio安装

一、下载Visual Studio 访问Visual Studio官方网站。下载 Visual Studio Tools - 免费安装 Windows、Mac、Linux 在主页上找到并点击“下载 Visual Studio”按钮。 选择适合需求的版本,例如“Visual Studio Community”(免费版本)&#x…

conda配置channel

你收到 CondaKeyError: channels: value https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main not present in config 错误是因为该镜像源(https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main)可能没有被正确添加到 Conda 的配置文件中&…

Windows编译FreeRDP步骤

1. **安装必要工具** powershell # 安装 Visual Studio 2022 (勾选"C桌面开发"组件) # 安装 CMake: https://cmake.org/download/ # 安装 Git: https://git-scm.com/ 2. **安装依赖项** powershell # 使用vcpkg包管理 git clone https://github.com/Microsoft/vcpk…

Fortunately 和 luckily区别

Fortunately 和 luckily 的确是同义词,都表示“幸运地”,用于描述某件事发生得很幸运,带有积极、正面的含义。然而,尽管它们的意思相近,fortunately 和 luckily 在使用上有一些细微的差别。 1. 含义相似 Fortunately…

【C语言深入探索】:指针高级应用与极致技巧(二)

目录 一、指针与数组 1.1. 数组指针 1.2. 指向多维数组的指针 1.2.1. 指向多维数组元素的指针 1.2.2. 指向多维数组行的指针 1.3. 动态分配多维数组 1.4. 小结 二、指针与字符串 2.1. 字符串表示 2.2. 字符串处理函数 2.3. 代码示例 2.4. 注意事项 三、指针与文件…

基于开源AI智能名片2 + 1链动模式S2B2C商城小程序源码在抖音招商加盟中的应用与创新

摘要:本文深入探讨了在短视频蓬勃发展的时代背景下,招商加盟领域借助抖音平台所具备的独特优势。同时,全面剖析开源AI智能名片2 1链动模式S2B2C商城小程序源码这一创新工具,详细阐述其如何与抖音招商加盟深度融合,助力…

pthread_cond_broadcast的概念和使用案例

pthread_cond_broadcast 是 POSIX 线程&#xff08;Pthreads&#xff09;库中用于条件变量&#xff08;Condition Variable&#xff09;操作的函数&#xff0c;定义在 <pthread.h> 头文件中。它的核心作用是唤醒所有等待在某个条件变量上的线程&#xff0c;通常用于多线程…

爬虫学习笔记之Robots协议相关整理

定义 Robots协议也称作爬虫协议、机器人协议&#xff0c;全名为网络爬虫排除标准&#xff0c;用来告诉爬虫和搜索引擎哪些页面可以爬取、哪些不可以。它通常是一个叫做robots.txt的文本文件&#xff0c;一般放在网站的根目录下。 robots.txt文件的样例 对有所爬虫均生效&#…

Unity游戏(Assault空对地打击)开发(4) 碰撞体和刚体的添加

前言 飞机和世界的大小关系不太对&#xff0c;我稍微缩小了一下飞机。 详细步骤 选中所有地形对象&#xff0c;如果没有圈起的部分&#xff0c;点击Add Component搜索添加。 接着选中Player对象&#xff0c;添加这两个组件&#xff0c;最好&#xff08;仅对于本项目开发&#x…

【Linux】从硬件到软件了解进程

个人主页~ 从硬件到软件了解进程 一、冯诺依曼体系结构二、操作系统三、操作系统进程管理1、概念2、PCB和task_struct3、查看进程4、通过系统调用fork创建进程&#xff08;1&#xff09;简述&#xff08;2&#xff09;系统调用生成子进程的过程〇提出问题①fork函数②父子进程关…

C语言教学第三课:运算符与表达式

一、课程导入 同学们&#xff0c;上节课我们学习了变量和数据类型&#xff0c;这些是C语言的基础。今天&#xff0c;我们将继续深入学习C语言中的运算符与表达式。运算符是C语言中用于执行各种操作的符号&#xff0c;而表达式则是由变量、常量和运算符组成的有意义的组合。通过…

Maven全解析:从基础到精通的实战指南

概念&#xff1a; Maven 是跨平台的项目管理工具。主要服务基于 Java 平台的构建&#xff0c;依赖管理和项目信息管理项目构建&#xff1a;高度自动化&#xff0c;跨平台&#xff0c;可重用的组件&#xff0c;标准化的流程 依赖管理&#xff1a; 对第三方依赖包的管理&#xf…

MATLAB实现单层竞争神经网络数据分类

一.单层竞争神经网络介绍 单层竞争神经网络&#xff08;Single-Layer Competitive Neural Network&#xff09;是一种基于竞争学习的神经网络模型&#xff0c;主要用于数据分类和模式识别。其核心思想是通过神经元之间的竞争机制&#xff0c;使得网络能够自动学习输入数据的特…

Weevely代码分析

亲测php5和php8都无效&#xff0c;只有php7有效 ailx10 1949 次咨询 4.9 网络安全优秀回答者 互联网行业 安全攻防员 去咨询 上一次做weevely实验可以追溯到2020年&#xff0c;当时还是weevely3.7&#xff0c;现在的是weevely4 生成php网页木马依然差不多…… php菜刀we…

【AI大模型】DeepSeek API大模型接口实现

目录 一、DeepSeek发展历程 2023 年&#xff1a;创立与核心技术突破 2024 年&#xff1a;开源生态与行业落地 2025 年&#xff1a;多模态与全球化布局 性能对齐 OpenAI-o1 正式版​ 二、API接口调用 1.DeepSeek-V3模型调用 2.DeepSeek-R1模型调用 三、本地化部署接口调…

具身智能-强化学习-强化学习基础-马尔可夫

文章目录 参考强化学习基础强化学习特点reward函数两种强化学习两种策略&#xff1a;探索&#xff08;Exploration&#xff09; vs. 利用&#xff08;Exploitation&#xff09;gym库的使用 马尔可夫马尔可夫过程马尔可夫奖励过程&#xff08;Markov Reward Process, MRP&#x…