二叉搜索树的最近公共祖先:递归与迭代解法全面解析

在本篇文章中,我们将详细解读力扣第235题“二叉搜索树的最近公共祖先”。通过学习本篇文章,读者将掌握如何在二叉搜索树中找到两个节点的最近公共祖先,并了解相关的复杂度分析和模拟面试问答。每种方法都将配以详细的解释,以便于理解。

问题描述

力扣第235题“二叉搜索树的最近公共祖先”描述如下:

给定一个二叉搜索树,找到该树中两个指定节点的最近公共祖先。

最近公共祖先的定义为:对于有根树 T 的两个节点 pq,最近公共祖先表示为一个节点 x,满足 xpq 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。

示例:

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点 2 和节点 8 的最近公共祖先是 6。

示例:

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2 和节点 4 的最近公共祖先是 2,因为根据定义最近公共祖先节点可以为节点本身。

解题思路

方法一:递归法
  1. 初步分析

    • 在二叉搜索树中,左子树的所有节点值都小于根节点,右子树的所有节点值都大于根节点。利用这一特性,可以通过递归查找两个节点 pq 的最近公共祖先。
  2. 步骤

    • 如果 pq 都比当前节点的值小,则最近公共祖先在当前节点的左子树中。
    • 如果 pq 都比当前节点的值大,则最近公共祖先在当前节点的右子树中。
    • 否则,当前节点就是 pq 的最近公共祖先。
代码实现
class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightdef lowestCommonAncestor(root: TreeNode, p: TreeNode, q: TreeNode) -> TreeNode:if not root:return None# 如果 p 和 q 都小于当前节点值,向左子树查找if p.val < root.val and q.val < root.val:return lowestCommonAncestor(root.left, p, q)# 如果 p 和 q 都大于当前节点值,向右子树查找if p.val > root.val and q.val > root.val:return lowestCommonAncestor(root.right, p, q)# 如果 p 和 q 一个小于当前节点,一个大于当前节点,当前节点即为最近公共祖先return root# 测试案例
root = TreeNode(6, TreeNode(2, TreeNode(0), TreeNode(4, TreeNode(3), TreeNode(5))), TreeNode(8, TreeNode(7), TreeNode(9)))
p = root.left  # 节点 2
q = root.right  # 节点 8
print(lowestCommonAncestor(root, p, q).val)  # 输出: 6p = root.left  # 节点 2
q = root.left.right  # 节点 4
print(lowestCommonAncestor(root, p, q).val)  # 输出: 2
方法二:迭代法
  1. 初步分析

    • 与递归方法相似,通过迭代的方式在树中查找 pq 的最近公共祖先,逐步向下遍历树直到找到最近公共祖先为止。
  2. 步骤

    • 从根节点开始,迭代地比较 pq 的值与当前节点的值,直到找到最近公共祖先。
代码实现
def lowestCommonAncestor(root: TreeNode, p: TreeNode, q: TreeNode) -> TreeNode:while root:# 如果 p 和 q 都小于当前节点值,向左子树查找if p.val < root.val and q.val < root.val:root = root.left# 如果 p 和 q 都大于当前节点值,向右子树查找elif p.val > root.val and q.val > root.val:root = root.rightelse:# 如果 p 和 q 一个小于当前节点,一个大于当前节点,当前节点即为最近公共祖先return root# 测试案例
root = TreeNode(6, TreeNode(2, TreeNode(0), TreeNode(4, TreeNode(3), TreeNode(5))), TreeNode(8, TreeNode(7), TreeNode(9)))
p = root.left  # 节点 2
q = root.right  # 节点 8
print(lowestCommonAncestor(root, p, q).val)  # 输出: 6p = root.left  # 节点 2
q = root.left.right  # 节点 4
print(lowestCommonAncestor(root, p, q).val)  # 输出: 2

复杂度分析

  • 时间复杂度

    • 递归法:O(H),其中 H 是树的高度。最坏情况下,可能需要遍历树的所有节点。
    • 迭代法:O(H),同样需要遍历树的节点,直到找到最近公共祖先。
  • 空间复杂度

    • 递归法:O(H),递归调用栈的深度取决于树的高度。
    • 迭代法:O(1),只使用了少量的指针变量。

模拟面试问答

问题 1:你能描述一下如何解决这个问题的思路吗?

回答:我们可以利用二叉搜索树的特性来解决这个问题。在二叉搜索树中,左子树的所有节点值都小于根节点,右子树的所有节点值都大于根节点。通过比较 pq 的值与当前节点的值,可以确定最近公共祖先的位置。如果 pq 都小于当前节点的值,那么最近公共祖先在左子树中;如果 pq 都大于当前节点的值,那么最近公共祖先在右子树中;否则,当前节点即为最近公共祖先。

问题 2:为什么选择使用递归或迭代的方法来解决这个问题?

回答:递归和迭代的方法都能够利用二叉搜索树的特性高效地找到最近公共祖先。递归方法代码简洁直观,适合于理解问题的核心逻辑;迭代方法则避免了递归带来的栈空间消耗,更加节省内存。两种方法的时间复杂度相同,选择哪种方法取决于具体的需求和场景。

问题 3:你的算法的时间复杂度和空间复杂度是多少?

回答:两种方法的时间复杂度都是 O(H),其中 H 是树的高度。在最坏情况下(例如链式树),需要遍历所有节点。递归方法的空间复杂度为 O(H),因为递归调用栈的深度与树的高度相关;迭代方法的空间复杂度为 O(1),只需要少量的指针变量。

问题 4:在代码中如何处理边界情况?

回答:对于空树或只有一个节点的树,代码处理简单,直接返回当前节点或 None。对于 pq 是同一节点的情况,代码也能够正确返回该节点作为最近公共祖先。代码通过二叉搜索树的特性,保证了所有可能的情况都能正确处理。

问题 5:你能解释一下为什么二叉搜索树的特性在这个问题中如此重要吗?

回答:二叉搜索树的特性决定了每个节点的左子树值都小于节点值,右子树值都大于节点值。这使得在查找最近公共祖先时,我们可以根据 pq 的值相对于当前节点的大小关系来快速定位公共祖先的位置,而不需要遍历整个树。这一特性极大地提高了查找效率。

问题 6:在代码中如何确保返回的结果是正确的?

回答:通过每一步的比较操作,确保 pq 的值相对于当前节点的大小关系得到正确处理。如果 pq 的值分别位于当前节点的两侧,或者其中一个值等于当前节点的值,则当前节点即为最近公共祖先。代码通过这种逻辑保证了返回结果的正确性。

问题 7:你能举例说明在面试中如何回答优化问题吗?

回答:在面试中,如果被问到如何优化算法,我会首先分析当前算法的时间复杂度和空间复杂度。由于算法的时间复杂度已经是 O(H),即使在最坏情况下也只需要遍历一次树,进一步优化的空间有限。可以讨论如何减少递归调用带来的栈空间消耗(如果采用递归方法),或如何在极端情况下(例如链式树)优化树结构以减少树的高度。

问题 8:如何验证代码的正确性?

回答:通过编写详细的测试用例,涵盖所有可能的树结构,如完全二叉树、不平衡二叉树、单节点树等,确保每个测试用例的结果都符合预期。此外,还可以通过手工推演树的遍历过程,验证代码逻辑的正确性。

问题 9:你能解释一下解决“二叉搜索树的最近公共祖先”问题的重要性吗?

回答:解决“二叉搜索树的最近公共祖先”问题展示了对树形数据结构的理解,尤其是二叉搜索树的特性。最近公共祖先问题是树形结构中非常经典的问题,通过掌握这种问题的解决方法,可以提高对树形结构的理解,并为处理更复杂的树形数据结构问题打下基础。

问题 10:在处理大数据集时,算法的性能如何?

回答:由于算法的时间复杂度为 O(H),在高度平衡的二叉搜索树中,性能表现良好。然而,如果树的高度接近节点数(例如链式树),性能可能下降。迭代方法通过节省空间,在处理大数据集时更加稳定,并且不会因为递归深度过大而导致栈溢出。

总结

本文详细解读了力扣第235题“二叉搜索树的最近公共祖先”,通过使用递归法和迭代法高效地查找二叉搜索树中两个节点的最近公共祖先,并提供了详细的解释和模拟面试问答。希望读者通过本文的学习,能够在力扣刷题的过程中更加得心应手。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/52849.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代码随想录算法训练营第三十一天|56. 合并区间 738.单调递增的数字

56. 合并区间 题目&#xff1a; 以数组 intervals 表示若干个区间的集合&#xff0c;其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间&#xff0c;并返回 一个不重叠的区间数组&#xff0c;该数组需恰好覆盖输入中的所有区间 。 示例 1&#xff1a; 输…

MySQL数据库事务的学习(有业务场景案例)

一、事务的基本概念 定义&#xff1a;事务是数据库管理系统执行过程中的一个逻辑单位&#xff0c;由一个或多个SQL语句组成&#xff0c;这些语句作为一个整体一起向系统提交&#xff0c;要么全部执行&#xff0c;要么全部不执行。 二、ACID特性详解 1. 原子性&#xff08;At…

node环境安装、vue-cli搭建过程、element-UI搭建使用过程

vue-cli 官方提供的一个脚手架&#xff0c;用于快速生成一个 vue 的项目模板&#xff1b;预先定义好的目录结构及基础代码&#xff0c;就好比咱们在创建 Maven 项目时可以选择创建一个骨架项目&#xff0c;这个骨架项目就是脚手架&#xff0c;我们的开发更加的快速 前端项目架…

探索Python测试的奥秘:nose库的魔法之旅

文章目录 探索Python测试的奥秘&#xff1a;nose库的魔法之旅1. 背景&#xff1a;为什么要用nose&#xff1f;2. nose是什么&#xff1f;3. 如何安装nose&#xff1f;4. 五个简单的库函数使用方法4.1 nose.tools.assert_true4.2 nose.tools.assert_equal4.3 nose.tools.raises4…

html2canvas、pdf-lib、file-saver将html页面导出成pdf

html2canvas、pdf-lib、file-saver将html页面导出成pdf 项目背景 需要根据用户的账号信息&#xff0c;生成一个pdf报告发给客户&#xff0c;要求报告包含echart饼图、走势图等。 方案 使用html2canvas&#xff0c;将页面转成图片&#xff0c;再通过pdf-lib将图片转成pdf文件…

Visual Studio Code离线汉化

从官网下载Visual Studio Code安装包后&#xff0c; 下载Visual Studio Code&#xff1a;https://code.visualstudio.com/ 若因网络等问题无法在线安装语言包&#xff0c;可以尝试离线安装&#xff1a; 从官网下载语言包&#xff1a; Extensions for Visual Studio family …

Stable Diffusion majicMIX_realistic模型的介绍及使用

一、简介 majicMIX_realistic模型是一种能够渲染出具有神秘或幻想色彩的真实场景的AI模型。这个模型的特点是在现实场景的基础上&#xff0c;通过加入一些魔法与奇幻元素来营造出极具画面效果和吸引力的图像。传统意义的现实场景虽然真实&#xff0c;但通常情况下缺乏奇幻性&a…

【网络世界】网络层

目录 &#x1f308;前言&#x1f308; &#x1f4c1; 网络层 &#x1f4c1; IPV4 &#x1f4c2; 什么是IP地址 &#x1f4c2; 网段划分 &#x1f4c2; 特殊IP &#x1f4c2; 内网和公网 &#x1f4c2; IPV4的危机 &#x1f4c1; IP协议格式 &#x1f4c1; 路由 &#x1f…

极限的性质【上】《用Manim可视化》

通过前面的极限的定义&#xff0c;现在是计算极限的时候了。然而&#xff0c;在此之前&#xff0c;我们需要一些极限的性质&#xff0c;这将使我们的工作变得简单一些。我们先来看看这些。 极限的性质&#xff1a; 1.常数对极限的影响 1.首先&#xff0c;我们假设和存在&…

flutter 类似Android 中RelativeLayout在末尾居中

1&#xff0c;Android RelativeLayout中写法&#xff1a; <RelativeLayoutxmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"><Buttonandroid:id&quo…

通过Origin提取图片数据

第一步&#xff1a; Tool --> Digitizer 第二步&#xff1a;点击文件&#xff0c;导入图片 第三步&#xff1a;设置坐标轴位置和数值&#xff08;Edit Aix&#xff09; 滑动鼠标放大图片&#xff0c;将X1移动到0&#xff0c;X2移动到80&#xff0c;Y1移动到97.0&#xff0c…

Kubernetes 上安装 Jenkins

安装 Helm curl https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash添加 Jenkins Helm 仓库 首先添加 Jenkins Helm 仓库 helm repo add jenkins https://charts.jenkins.io helm repo update安装 Jenkins 使用 Helm 安装 Jenkins 的最新版本&…

Linux下C编程使用动态链接库

为了方便程序功能的后期升级扩展&#xff0c;在程序设计时经常会用到动态库&#xff0c;这样子程序只有到运行阶段才会去加载动态库并且使用库中的函数&#xff0c;那么我们往往只需要更新DLL&#xff08;Windows系统&#xff09;或SO&#xff08;Linux系统&#xff09;文件即可…

tr,cut,diff(数据处理

tr 命令 功能&#xff1a; tr 命令用于转换或删除文件中的字符。 语法&#xff1a; 格式&#xff1a; tr [-cdst][--help][--version][第一字符集][第二字符集] tr [OPTION]…SET1[SET2] 标识符&#xff1a; -d&#xff1a;删除指定的字符。-s&#xff1a;压缩重复的字…

本地部署Xinference实现智能体推理工作流(二)

第二篇章 Dify接入 Xinference 部署的本地模型 1. 安装Dify 克隆 Dify 源代码至本地。 git clone https://github.com/langgenius/dify.git 2. 启动Dify 进入 Dify 源代码的 docker 目录&#xff0c;执行一键启动命令&#xff1a; cd dify/docker cp .env.example .env d…

【OWOD论文】开放世界中OD代码_2_模型部分

简介 本文记录OWOD代码中的模型代码部分。数据部分可看我上一个博客【【OWOD论文】开放世界中OD代码_1_数据部分-CSDN博客】 模型代码 1 起步 在代码中找到 detectron2\engine\defaults.py DefaultTrainer类 __init__方法 根据上述 build_model 回溯到 detectron2\modeling\…

无人机校企合作:组装、维修、研发全面提升学生技能方好就业

无人机校企合作在组装、维修、研发等方面全面提升学生技能&#xff0c;进而促进学生就业&#xff0c;是一个具有前瞻性和实践性的教育模式。以下是对该合作模式的详细分析&#xff1a; 一、合作背景与意义 随着无人机技术的快速发展和广泛应用&#xff0c;市场对无人机专业人…

Maya云渲染平台哪个好,5家云渲染整理

Maya云渲染服务可以帮助用户利用云计算技术&#xff0c;通过互联网访问专业的渲染农场&#xff0c;利用大规模的服务器实现云渲染&#xff0c;比如单镜头同时安排50-300台机器渲染&#xff0c;从而大幅提升渲染效率和便捷性。当然&#xff0c;市面上的渲染农场参差不齐&#xf…

叉车(工业车辆)安全管理系统,云端监管人车信息运营情况方案

近年来&#xff0c;国家和各地政府相继出台了多项政策法规&#xff0c;从政策层面推行叉车智慧监管&#xff0c;加大叉车安全监管力度。同时鼓励各地结合实际&#xff0c;积极探索智慧叉车建设&#xff0c;实现作业人员资格认证、车辆状态认证、安全操作提醒、行驶轨迹监控等&a…

react学习之useState和useEffect

useState useState 可以使函数组件像类组件一样拥有 state&#xff0c;函数组件通过 useState 可以让组件重新渲染&#xff0c;更新视图。 实际使用 setstate()中回调函数的返回值将会成为新的state值回调函数执行时&#xff0c; React会将最新的state值作为参数传递 const A…