% 交叉定位 - 最小二乘法定位算法模拟
% 参数设置
 numIterations = 1000; % 模拟迭代次数
 maxDistance = 1000; % 最远定位距离(设定范围)
 speedOfSound = 343; % 声速(单位:m/s)
% 预警机坐标
 source = [0, 0];
% 初始化结果
 crbResults = zeros(numIterations, 1);
 rmseResults = zeros(numIterations, 1);
% 模拟迭代
 for i = 1:numIterations
 % 随机生成无人机坐标
 drone = generateRandomPosition(maxDistance);
% 计算距离
distance1 = calculateDistance(source, drone);
distance2 = calculateDistance(source, drone);% 添加测量误差
measurement1 = distance1 + normrnd(0, 1);
measurement2 = distance2 + normrnd(0, 1);% 定位算法 - 最小二乘法
estimatedPosition = leastSquaresLocalization(source, measurement1, measurement2, speedOfSound);% 计算CRB
crb = calculateCRB(source, drone, speedOfSound);
crbResults(i) = crb;% 计算RMSE
rmse = norm(estimatedPosition - drone);
rmseResults(i) = rmse;
end
% 寻找最远定位距离
 maxDistanceIdx = find(rmseResults == max(rmseResults));
 maxDistanceValue = sqrt(crbResults(maxDistanceIdx));
% 显示结果
 fprintf(‘最远定位距离:%.2f m\n’, maxDistanceValue);
% 生成随机位置
 function position = generateRandomPosition(maxDistance)
 angle = rand * 2 * pi;
 distance = rand * maxDistance;
 position = distance * [cos(angle), sin(angle)];
 end
% 计算距离
 function distance = calculateDistance(source, target)
 distance = norm(target - source);
 end
% 最小二乘法定位算法
 function estimatedPosition = leastSquaresLocalization(source, measurement1, measurement2, speedOfSound)
 A = 2 * [source(1) - measurement1(1), source(2) - measurement1(2); …
 source(1) - measurement2(1), source(2) - measurement2(2)];
 b = [measurement1(1)^2 - source(1)^2 + measurement1(2)^2 - source(2)^2 - speedOfSound^2 * measurement1(3)^2; …
 measurement2(1)^2 - source(1)^2 + measurement2(2)^2 - source(2)^2 - speedOfSound^2 * measurement2(3)^2];
 estimatedPosition = (A’ * A) \ (A’ * b);
 end
% 计算CRB(Cramér-Rao下界)
 function crb = calculateCRB(source, target, speedOfSound)
 distance = norm(target - source);
 crb = (speedOfSound^2 / (4 * pi^2)) * (1 / distance)^2;
 end