Python面试题【数据结构和算法部分161-200】  Python面试题【数据结构和算法部分161-200】   
 
问题:如何在Python中找到最近公共祖先(LCA)? 答案:     class  TreeNode : def  __init__ ( self,  x) : self. val =  xself. left =  None self. right =  None def  lowest_common_ancestor ( root,  p,  q) : if  not  root or  root ==  p or  root ==  q: return  rootleft =  lowest_common_ancestor( root. left,  p,  q) right =  lowest_common_ancestor( root. right,  p,  q) if  left and  right: return  rootreturn  left if  left else  right
问题:如何在Python中实现计数质数的功能? 答案:     def  count_primes ( n) : if  n <  2 : return  0 primes =  [ True ]  *  nprimes[ 0 ]  =  primes[ 1 ]  =  False for  i in  range ( 2 ,  int ( n **  0.5 )  +  1 ) : if  primes[ i] : primes[ i* i: n: i]  =  [ False ]  *  len ( primes[ i* i: n: i] ) return  sum ( primes) 
问题:在Python中如何有效地实现斐波那契数列? 答案:     def  fibonacci ( n,  memo= { } ) : if  n in  memo: return  memo[ n] if  n <=  2 : return  1 memo[ n]  =  fibonacci( n- 1 ,  memo)  +  fibonacci( n- 2 ,  memo) return  memo[ n] 
问题:如何在Python中实现一个简单的散列表? 答案:     class  HashTable : def  __init__ ( self) : self. MAX =  100 self. arr =  [ None  for  i in  range ( self. MAX) ] def  get_hash ( self,  key) : h =  0 for  char in  key: h +=  ord ( char) return  h %  self. MAXdef  add ( self,  key,  value) : h =  self. get_hash( key) self. arr[ h]  =  valuedef  get ( self,  key) : h =  self. get_hash( key) return  self. arr[ h] 
问题:Python中的动态规划是如何工作的? 答案:     动态规划是一种算法思想,用于解决具有重叠子问题和最优子结构特性的问题。通过将问题分解为更小的子问题,并存储这些子问题的解(通常是在一个数组或字典中),动态规划避免了重复计算子问题,从而提高了效率。
问题:如何在Python中找到数组中重复的数字? 答案:     def  find_duplicates ( nums) : seen =  set ( ) duplicates =  set ( ) for  num in  nums: if  num in  seen: duplicates. add( num) else : seen. add( num) return  list ( duplicates) 
问题:如何在Python中检测链表中的环? 答案:     class  ListNode : def  __init__ ( self,  val= 0 ,  next = None ) : self. val =  valself. next  =  next def  has_cycle ( head) : slow =  headfast =  headwhile  fast and  fast. next : slow =  slow. next fast =  fast. next . next if  slow ==  fast: return  True return  False 
问题:在Python中如何使用递归进行二叉树的中序遍历? 答案:     def  inorder_traversal ( root) : res =  [ ] def  inorder ( node) : if  not  node: return inorder( node. left) res. append( node. val) inorder( node. right) inorder( root) return  res
问题:如何在Python中合并两个有序链表? 答案:     class  ListNode : def  __init__ ( self,  val= 0 ,  next = None ) : self. val =  valself. next  =  next def  merge_two_lists ( l1,  l2) : dummy =  ListNode( ) tail =  dummywhile  l1 and  l2: if  l1. val <  l2. val: tail. next ,  l1 =  l1,  l1. next else : tail. next ,  l2 =  l2,  l2. next tail =  tail. next tail. next  =  l1 or  l2return  dummy. next 
问题:如何在Python中找到字符串中的所有排列? 答案:     from  itertools import  permutationsdef  all_permutations ( s) : return  [ '' . join( p)  for  p in  permutations( s) ] 
问题:如何在Python中使用动态规划求解背包问题? 答案:     def  knapSack ( W,  wt,  val,  n) : K =  [ [ 0  for  x in  range ( W+ 1 ) ]  for  x in  range ( n+ 1 ) ] for  i in  range ( n+ 1 ) : for  w in  range ( W+ 1 ) : if  i ==  0  or  w ==  0 : K[ i] [ w]  =  0 elif  wt[ i- 1 ]  <=  w: K[ i] [ w]  =  max ( val[ i- 1 ]  +  K[ i- 1 ] [ w- wt[ i- 1 ] ] ,   K[ i- 1 ] [ w] ) else : K[ i] [ w]  =  K[ i- 1 ] [ w] return  K[ n] [ W] 
问题:在Python中如何实现二分查找树的删除操作? 答案:     class  TreeNode : def  __init__ ( self,  key) : self. left =  None self. right =  None self. val =  keydef  deleteNode ( root,  key) : if  root is  None : return  rootif  key <  root. val: root. left =  deleteNode( root. left,  key) elif ( key >  root. val) : root. right =  deleteNode( root. right,  key) else : if  root. left is  None : temp =  root. rightroot =  None return  tempelif  root. right is  None : temp =  root. leftroot =  None return  temptemp =  minValueNode( root. right) root. val =  temp. valroot. right =  deleteNode( root. right,  temp. val) return  rootdef  minValueNode ( node) : current =  nodewhile ( current. left is  not  None ) : current =  current. leftreturn  current
问题:Python中如何实现图的拓扑排序? 答案:     from  collections import  defaultdictclass  Graph : def  __init__ ( self,  vertices) : self. graph =  defaultdict( list ) self. V =  verticesdef  addEdge ( self,  u,  v) : self. graph[ u] . append( v) def  topologicalSortUtil ( self,  v,  visited,  stack) : visited[ v]  =  True for  i in  self. graph[ v] : if  visited[ i]  ==  False : self. topologicalSortUtil( i,  visited,  stack) stack. insert( 0 ,  v) def  topologicalSort ( self) : visited =  [ False ] * self. Vstack =  [ ] for  i in  range ( self. V) : if  visited[ i]  ==  False : self. topologicalSortUtil( i,  visited,  stack) print ( stack) 
问题:如何在Python中找出数组中重复出现的所有元素? 答案:     def  findDuplicates ( nums) : duplicates =  [ ] for  num in  nums: if  nums[ abs ( num)  -  1 ]  <  0 : duplicates. append( abs ( num) ) else : nums[ abs ( num)  -  1 ]  *=  - 1 return  duplicates
问题:在Python中如何实现深度优先搜索(DFS)用于解决迷宫问题? 答案:     def  solveMaze ( maze) : def  dfs ( x,  y) : if  x <  0  or  x >=  len ( maze)  or  y <  0  or  y >=  len ( maze[ 0 ] )  or  maze[ x] [ y]  ==  1 : return  False if  maze[ x] [ y]  ==  'E' : return  True maze[ x] [ y]  =  1 if  dfs( x+ 1 ,  y)  or  dfs( x- 1 ,  y)  or  dfs( x,  y+ 1 )  or  dfs( x,  y- 1 ) : return  True return  False for  i in  range ( len ( maze) ) : for  j in  range ( len ( maze[ 0 ] ) ) : if  maze[ i] [ j]  ==  'S' : return  dfs( i,  j) return  False 
问题:Python中如何实现数组的旋转? 答案:     def  rotate_array ( nums,  k) : n =  len ( nums) k =  k %  nnums[ : ]  =  nums[ n- k: ]  +  nums[ : n- k] 
问题:如何在Python中实现链表排序? 答案:     class  ListNode : def  __init__ ( self,  val= 0 ,  next = None ) : self. val =  valself. next  =  next def  sortList ( head) : if  not  head or  not  head. next : return  headslow,  fast =  head,  head. next while  fast and  fast. next : slow =  slow. next fast =  fast. next . next mid =  slow. next slow. next  =  None left,  right =  sortList( head) ,  sortList( mid) return  merge( left,  right) def  merge ( l1,  l2) : dummy =  ListNode( 0 ) tail =  dummywhile  l1 and  l2: if  l1. val <  l2. val: tail. next ,  l1 =  l1,  l1. next else : tail. next ,  l2 =  l2,  l2. next tail =  tail. next tail. next  =  l1 or  l2return  dummy. next 
问题:如何在Python中找到前K个高频元素? 答案:     import  heapqfrom  collections import  Counterdef  topKFrequent ( nums,  k) : count =  Counter( nums) return  heapq. nlargest( k,  count. keys( ) ,  key= count. get) 
问题:在Python中如何实现两数之和? 答案:     def  twoSum ( nums,  target) : seen =  { } for  i,  num in  enumerate ( nums) : if  target -  num in  seen: return  [ seen[ target -  num] ,  i] seen[ num]  =  i
问题:如何在Python中找到最小路径和? 答案:     def  minPathSum ( grid) : for  i in  range ( len ( grid) ) : for  j in  range ( len ( grid[ 0 ] ) ) : if  i ==  0  and  j ==  0 : continue elif  i ==  0 : grid[ i] [ j]  +=  grid[ i] [ j- 1 ] elif  j ==  0 : grid[ i] [ j]  +=  grid[ i- 1 ] [ j] else : grid[ i] [ j]  +=  min ( grid[ i- 1 ] [ j] ,  grid[ i] [ j- 1 ] ) return  grid[ - 1 ] [ - 1 ] 
问题:如何在Python中实现一个最大堆? 答案:     import  heapqclass  MaxHeap : def  __init__ ( self) : self. heap =  [ ] def  push ( self,  val) : heapq. heappush( self. heap,  - val) def  pop ( self) : return  - heapq. heappop( self. heap) def  peek ( self) : return  - self. heap[ 0 ] 
问题:在Python中如何实现一个图的深度优先搜索(DFS)来检测环? 答案:     def  detect_cycle_dfs ( graph) : def  dfs ( node,  visited,  rec_stack) : visited[ node]  =  True rec_stack[ node]  =  True for  neighbour in  graph[ node] : if  not  visited[ neighbour] : if  dfs( neighbour,  visited,  rec_stack) : return  True elif  rec_stack[ neighbour] : return  True rec_stack[ node]  =  False return  False visited =  [ False ]  *  len ( graph) rec_stack =  [ False ]  *  len ( graph) for  node in  range ( len ( graph) ) : if  not  visited[ node] : if  dfs( node,  visited,  rec_stack) : return  True return  False 
问题:如何在Python中实现一个简单的LRU缓存? 答案:     from  collections import  OrderedDictclass  LRUCache : def  __init__ ( self,  capacity:  int ) : self. cache =  OrderedDict( ) self. capacity =  capacitydef  get ( self,  key:  int )  - >  int : if  key not  in  self. cache: return  - 1 else : self. cache. move_to_end( key) return  self. cache[ key] def  put ( self,  key:  int ,  value:  int )  - >  None : if  key in  self. cache: self. cache. move_to_end( key) self. cache[ key]  =  valueif  len ( self. cache)  >  self. capacity: self. cache. popitem( last= False ) 
问题:如何在Python中找到一个数组中的所有子集的和? 答案:     def  subset_sums ( arr) : sums =  [ 0 ] for  num in  arr: sums +=  [ num +  s for  s in  sums] return  sums
问题:如何在Python中实现一个二叉树的后序遍历迭代器? 答案:     class  BSTIterator : def  __init__ ( self,  root:  TreeNode) : self. stack =  [ ] self. _leftmost_inorder( root) def  _leftmost_inorder ( self,  root) : while  root: self. stack. append( root) root =  root. leftdef  next ( self)  - >  int : topmost_node =  self. stack. pop( ) if  topmost_node. right: self. _leftmost_inorder( topmost_node. right) return  topmost_node. valdef  hasNext ( self)  - >  bool : return  len ( self. stack)  >  0 
问题:如何在Python中实现一个字符串的所有排列的迭代器? 答案:     from  itertools import  permutationsclass  PermutationIterator : def  __init__ ( self,  string) : self. permutations =  permutations( string) self. index =  0 def  next ( self) : if  self. index <  len ( self. permutations) : result =  '' . join( self. permutations[ self. index] ) self. index +=  1 return  resultelse : raise  StopIterationdef  hasNext ( self) : return  self. index <  len ( self. permutations) 
问题:如何在Python中实现一个简单的文本模式匹配算法? 答案:     def  text_search ( text,  pattern) : for  i in  range ( len ( text)  -  len ( pattern)  +  1 ) : if  text[ i: i+ len ( pattern) ]  ==  pattern: return  ireturn  - 1 
问题:如何在Python中实现一个简单的加权图的Dijkstra算法? 答案:     import  heapqdef  dijkstra ( graph,  start) : distances =  { vertex:  float ( 'infinity' )  for  vertex in  graph} distances[ start]  =  0 pq =  [ ( 0 ,  start) ] while  pq: current_distance,  current_vertex =  heapq. heappop( pq) if  current_distance >  distances[ current_vertex] : continue for  neighbor,  weight in  graph[ current_vertex] . items( ) : distance =  current_distance +  weightif  distance <  distances[ neighbor] : distances[ neighbor]  =  distanceheapq. heappush( pq,  ( distance,  neighbor) ) return  distances
问题:如何在Python中实现一个简单的正则表达式匹配算法? 答案:     def  is_match ( text,  pattern) : if  not  pattern: return  not  textfirst_match =  bool ( text)  and  pattern[ 0 ]  in  { text[ 0 ] ,  '.' } if  len ( pattern)  >=  2  and  pattern[ 1 ]  ==  '*' : return  ( is_match( text,  pattern[ 2 : ] )  or first_match and  is_match( text[ 1 : ] ,  pattern) ) else : return  first_match and  is_match( text[ 1 : ] ,  pattern[ 1 : ] ) 
问题:如何在Python中实现一个简单的表达式求值算法? 答案:     def  evaluate_expression ( expr) : def  calc ( op,  second,  first) : if  op ==  '+' :  return  first +  secondif  op ==  '-' :  return  first -  secondif  op ==  '*' :  return  first *  secondif  op ==  '/' :  return  first //  secondstack =  [ ] num =  '' precedence =  { '+' :  1 ,  '-' :  1 ,  '*' :  2 ,  '/' :  2 } operators =  set ( '+-*/' ) for  c in  expr: if  c. isdigit( ) : num +=  celif  c in  operators: while  ( stack and  stack[ - 1 ]  in  operators and precedence[ stack[ - 1 ] ]  >=  precedence[ c] ) : stack. append( calc( stack. pop( ) ,  stack. pop( ) ,  stack. pop( ) ) ) stack. append( num) num =  '' stack. append( c) if  num: stack. append( num) while  len ( stack)  >  1 : stack. append( calc( stack. pop( ) ,  stack. pop( ) ,  stack. pop( ) ) ) return  stack[ 0 ] 
问题:如何在Python中实现一个双向链表? 答案:     class  ListNode : def  __init__ ( self,  value= 0 ,  prev= None ,  next = None ) : self. value =  valueself. prev =  prevself. next  =  next class  DoublyLinkedList : def  __init__ ( self) : self. head =  ListNode( 0 ) self. tail =  ListNode( 0 ,  self. head) self. head. next  =  self. taildef  insert ( self,  value) : node =  ListNode( value,  self. tail. prev,  self. tail) self. tail. prev. next  =  nodeself. tail. prev =  nodedef  delete ( self,  node) : node. prev. next  =  node. next node. next . prev =  node. prev
问题:如何在Python中检测一个数组中是否存在重复元素? 答案:     def  contains_duplicate ( nums) : return  len ( nums)  !=  len ( set ( nums) ) 
问题:在Python中如何实现一个基本的哈希映射? 答案:     class  HashMap : def  __init__ ( self) : self. size =  1000 self. table =  [ [ ]  for  _ in  range ( self. size) ] def  _hash ( self,  key) : return  hash ( key)  %  self. sizedef  put ( self,  key,  value) : hash_key =  self. _hash( key) for  i,  ( k,  v)  in  enumerate ( self. table[ hash_key] ) : if  k ==  key: self. table[ hash_key] [ i]  =  ( key,  value) return self. table[ hash_key] . append( ( key,  value) ) def  get ( self,  key) : hash_key =  self. _hash( key) for  ( k,  v)  in  self. table[ hash_key] : if  k ==  key: return  vreturn  - 1 def  remove ( self,  key) : hash_key =  self. _hash( key) for  i,  ( k,  v)  in  enumerate ( self. table[ hash_key] ) : if  k ==  key: del  self. table[ hash_key] [ i] 
问题:如何在Python中实现快速幂算法? 答案:     def  fast_power ( base,  power) : result =  1 while  power >  0 : if  power %  2  ==  1 : result *=  basebase *=  basepower //=  2 return  result
问题:如何在Python中实现一个简单的字符串哈希函数? 答案:     def  string_hash ( s,  mod) : hash_val =  0 p =  31 p_power =  1 for  char in  s: hash_val =  ( hash_val +  ( ord ( char)  -  ord ( 'a' )  +  1 )  *  p_power)  %  modp_power =  ( p_power *  p)  %  modreturn  hash_val
问题:如何在Python中找到一个数的所有正因数? 答案:     def  find_factors ( n) : factors =  [ ] for  i in  range ( 1 ,  int ( n** 0.5 ) + 1 ) : if  n %  i ==  0 : factors. append( i) if  i !=  n //  i: factors. append( n //  i) return  factors
问题:如何在Python中实现一个简单的计算器解析器? 答案:     def  calculate ( s) : num,  stack,  sign =  0 ,  [ ] ,  '+' for  i in  range ( len ( s) ) : if  s[ i] . isdigit( ) : num =  num *  10  +  int ( s[ i] ) if  s[ i]  in  '+-*/'  or  i ==  len ( s) - 1 : if  sign ==  '+' : stack. append( num) elif  sign ==  '-' : stack. append( - num) elif  sign ==  '*' : stack. append( stack. pop( )  *  num) else : stack. append( int ( stack. pop( )  /  num) ) num =  0 sign =  s[ i] return  sum ( stack) 
问题:如何在Python中实现二叉树的层序遍历? 答案:     from  collections import  dequedef  level_order ( root) : if  not  root: return  [ ] result,  queue =  [ ] ,  deque( [ root] ) while  queue: level =  [ ] for  _ in  range ( len ( queue) ) : node =  queue. popleft( ) level. append( node. val) if  node. left: queue. append( node. left) if  node. right: queue. append( node. right) result. append( level) return  result
问题:如何在Python中实现一个简单的前缀和数组? 答案:     def  prefix_sum ( nums) : prefix_sums =  [ 0 ]  *  ( len ( nums)  +  1 ) for  i in  range ( len ( nums) ) : prefix_sums[ i+ 1 ]  =  prefix_sums[ i]  +  nums[ i] return  prefix_sums
问题:如何在Python中实现一个简单的后缀和数组? 答案:     def  suffix_sum ( nums) : suffix_sums =  [ 0 ]  *  ( len ( nums)  +  1 ) for  i in  range ( len ( nums) - 1 ,  - 1 ,  - 1 ) : suffix_sums[ i]  =  suffix_sums[ i+ 1 ]  +  nums[ i] return  suffix_sums