wordpress网站静态化在线查看网站源码

bicheng/2026/1/23 9:27:39/文章来源:
wordpress网站静态化,在线查看网站源码,网站建设公司哪家好?该如何选择,网站建设的类型实验五#xff1a;AAAI 会议论文聚类分析 ​ 本次实验以AAAI 2014会议论文数据为基础#xff0c;要求实现或调用无监督聚类算法#xff0c;了解聚类方法。 1 任务介绍 ​ 每年国际上召开的大大小小学术会议不计其数#xff0c;发表了非常多的论文。在计算机领域的一些大…实验五AAAI 会议论文聚类分析 ​ 本次实验以AAAI 2014会议论文数据为基础要求实现或调用无监督聚类算法了解聚类方法。 1 任务介绍 ​ 每年国际上召开的大大小小学术会议不计其数发表了非常多的论文。在计算机领域的一些大型学术会议上一次就可以发表涉及各个方向的几百篇论文。按论文的主题、内容进行聚类有助于人们高效地查找和获得所需要的论文。本案例数据来源于AAAI 2014上发表的约400篇文章由UCI公开提供提供包括标题、作者、关键词、摘要在内的信息希望大家能根据这些信息合理地构造特征向量来表示这些论文并设计实现或调用聚类算法对论文进行聚类。最后也可以对聚类结果进行观察看每一类都是什么样的论文是否有一些主题。 1.1 基本要求 将文本转化为向量实现或调用无监督聚类算法对论文聚类例如10类可使用已有工具包例如sklearn观察每一类中的论文调整算法使结果较为合理无监督聚类没有标签效果较难评价因此没有硬性指标跑通即可主要让大家了解和感受聚类算法比较简单。 1.2 扩展要求 对文本向量进行降维并将聚类结果可视化成散点图。 注group和topic也不能完全算是标签因为 有些文章作者投稿时可能会选择某个group/topic但实际和另外group/topic也相关甚至更相关一篇文章可能有多个group和topic作为标签会出现有的文章同属多个类别这里暂不考虑这样的聚类group和topic的取值很多但聚类常常希望指定聚合成出例如5/10/20类感兴趣但同学可以思考利用group和topic信息来量化评价无监督聚类结果不作要求。 1.3 提示 高维向量的降维旨在去除一些高相关性的特征维度保留最有用的信息用更低维的向量表示高维数据常用的方法有PCA和t-SNE等降维与聚类是两件不同的事情聚类实际上在降维前的高维向量和降维后的低维向量上都可以进行结果也可能截然不同高维向量做聚类降维可视化后若有同一类的点不在一起是正常的。在高维空间中它们可能是在一起的降维后损失了一些信息。 import pandas as pd import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cluster import KMeans import re import nltk import sklearn import seaborn as sns # 作图 import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy import sparse # 稀疏矩阵RANDOM_STATE 20232 导入数据 data_df pd.read_csv(./data/[UCI] AAAI-14 Accepted Papers - Papers.csv) # 读入 csv 文件为 pandas 的 DataFrame data_df.head(5) titleauthorsgroupskeywordstopicsabstract0Kernelized Bayesian Transfer LearningMehmet Gönen and Adam A. MargolinNovel Machine Learning Algorithms (NMLA)cross-domain learning\ndomain adaptation\nkern...APP: Biomedical / Bioinformatics\nNMLA: Bayesi...Transfer learning considers related but distin...1Source Free Transfer Learning for Text Class...Zhongqi Lu, Yin Zhu, Sinno Pan, Evan Xiang, Yu...AI and the Web (AIW)\nNovel Machine Learning A...Transfer Learning\nAuxiliary Data Retrieval\nT...AIW: Knowledge acquisition from the web\nAIW: ...Transfer learning uses relevant auxiliary data...2A Generalization of Probabilistic Serial to Ra...Haris Aziz and Paul StursbergGame Theory and Economic Paradigms (GTEP)social choice theory\nvoting\nfair division\ns...GTEP: Game Theory\nGTEP: Social Choice / VotingThe probabilistic serial (PS) rule is one of t...3Lifetime Lexical Variation in Social MediaLiao Lizi, Jing Jiang, Ying Ding, Heyan Huang ...NLP and Text Mining (NLPTM)Generative model\nSocial Networks\nAge PredictionAIW: Web personalization and user modeling\nNL...As the rapid growth of online social media att...4Hybrid Singular Value Thresholding for Tensor ...Xiaoqin Zhang, Zhengyuan Zhou, Di Wang and Yi MaKnowledge Representation and Reasoning (KRR)\n...tensor completion\nlow-rank recovery\nhybrid s...KRR: Knowledge Representation (General/Other)\...In this paper, we study the low-rank tensor co... 查看dataframe数据信息 data_df.info()class pandas.core.frame.DataFrame RangeIndex: 398 entries, 0 to 397 Data columns (total 6 columns):# Column Non-Null Count Dtype --- ------ -------------- ----- 0 title 398 non-null object1 authors 398 non-null object2 groups 396 non-null object3 keywords 398 non-null object4 topics 394 non-null object5 abstract 398 non-null object dtypes: object(6) memory usage: 18.8 KB从以上信息可以看出data_df存在空数据应对其作处理 # stack()将df转换为series对象; [lambda x:x]只保留True元素 data_df.isnull().stack()[lambda x: x]211 groups True 340 groups True 344 topics True 364 topics True 365 topics True 388 topics True dtype: bool对空数据进行填充为空字符处理 data_df data_df.fillna() # 填充空值为空字符串3 文本想量化 3.1 简单文本向量化 将同一篇文章的不同类型数据结合选择使用TF-IDF模型对文本进行向量化 paper_df data_df[title] data_df[authors] data_df[groups] \ data_df[keywords] data_df[topics] data_df[abstract]paper_df结果 0 Kernelized Bayesian Transfer Learning Mehmet G... 1 Source Free Transfer Learning for Text Class... 2 A Generalization of Probabilistic Serial to Ra... 3 Lifetime Lexical Variation in Social Media Lia... 4 Hybrid Singular Value Thresholding for Tensor ...... 393 Mapping Users Across Networks by Manifold Alig... 394 Compact Aspect Embedding For Diversified Query... 395 Contraction and Revision over DL-Lite TBoxes Z... 396 Zero Pronoun Resolution as Ranking Chen Chen a... 397 Supervised Transfer Sparse Coding Maruan Al-Sh... Length: 398, dtype: objectvectorizer TfidfVectorizer(max_df0.9, min_df10) X_simple vectorizer.fit_transform(paper_df)3.2 复杂文本向量化 将作者名字分割合适 def author_tokenizer(text): authors re.split(\sand\s|\s*,\s*, text) # 根据逗号或者and进行分词return authorsauthors data_df[authors][1] author_split author_tokenizer(authors) print(authors,\n,author_split)结果 Zhongqi Lu, Yin Zhu, Sinno Pan, Evan Xiang, Yujing Wang and Qiang Yang [Zhongqi Lu, Yin Zhu, Sinno Pan, Evan Xiang, Yujing Wang, Qiang Yang]将其他文本进行分词、去除停用词、词干化处理 def text_tokenizer(text):# 分词words nltk.tokenize.word_tokenize(text)# 去除停用词stop_words set(nltk.corpus.stopwords.words(english))words [word for word in words if word.lower() not in stop_words]# 词干化stemmer nltk.stem.PorterStemmer()words [stemmer.stem(word) for word in words]return wordsabstractsdata_df[abstract][1] abstracts_split text_tokenizer(abstracts) print(abstracts,\n,abstracts_split)结果 Transfer learning uses relevant auxiliary data to help the learning task in a target domain where labeled data are usually insufficient to train an accurate model. Given appropriate auxiliary data, researchers have proposed many transfer learning models. How to find such auxiliary data, however, is of little research in the past. In this paper, we focus on this auxiliary data retrieval problem, and propose a transfer learning framework that effectively selects helpful auxiliary data from an open knowledge space (e.g. the World Wide Web). Because there is no need of manually selecting auxiliary data for different target domain tasks, we call our framework Source Free Transfer Learning (SFTL). For each target domain task, SFTL framework iteratively queries for the helpful auxiliary data based on the learned model and then updates the model using the retrieved auxiliary data. We highlight the automatic constructions of queries and the robustness of the SFTL framework. Our experiments on the 20 NewsGroup dataset and the Google search snippets dataset suggest that the new framework is capable to have the comparable performance to those state-of-the-art methods with dedicated selections of auxiliary data. [transfer, learn, use, relev, auxiliari, data, help, learn, task, target, domain, label, data, usual, insuffici, train, accur, model, ., given, appropri, auxiliari, data, ,, research, propos, mani, transfer, learn, model, ., find, auxiliari, data, ,, howev, ,, littl, research, past, ., paper, ,, focu, auxiliari, data, retriev, problem, ,, propos, transfer, learn, framework, effect, select, help, auxiliari, data, open, knowledg, space, (, e.g, ., world, wide, web, ), ., need, manual, select, auxiliari, data, differ, target, domain, task, ,, call, framework, sourc, free, transfer, learn, (, sftl, ), ., target, domain, task, ,, sftl, framework, iter, queri, help, auxiliari, data, base, learn, model, updat, model, use, retriev, auxiliari, data, ., highlight, automat, construct, queri, robust, sftl, framework, ., experi, 20, newsgroup, dataset, googl, search, snippet, dataset, suggest, new, framework, capabl, compar, perform, state-of-the-art, method, dedic, select, auxiliari, data, .]查看每列名称 data_df.columns结果 Index([title, authors, groups, keywords, topics, abstract], dtypeobject)创建 TF-IDF 矩阵 vectorizer_authour TfidfVectorizer(tokenizer author_tokenizer) vectorizer_text TfidfVectorizer(tokenizer text_tokenizer) X_authours vectorizer_authour.fit_transform(data_df[authors].tolist()) X_title vectorizer_text.fit_transform(data_df[title].tolist()) X_groups vectorizer_text.fit_transform(data_df[groups].tolist()) X_keywords vectorizer_text.fit_transform(data_df[keywords].tolist()) X_topics vectorizer_text.fit_transform(data_df[topics].tolist()) vectorizer_texts TfidfVectorizer(max_df0.9, min_df5, tokenizer text_tokenizer) X_abstract vectorizer_texts.fit_transform(data_df[abstract].tolist()) print(fX_title:{X_title.shape}) print(fX_authours:{X_authours.shape}) print(fX_groups:{X_groups.shape}) print(fX_keywords:{X_keywords.shape}) print(fX_topics:{X_topics.shape}) print(fX_abstract:{X_abstract.shape})结果 X_title:(398, 1124) X_authours:(398, 1105) X_groups:(398, 64) X_keywords:(398, 1051) X_topics:(398, 305) X_abstract:(398, 1042)将稀疏矩阵拼接 X_passage sparse.hstack([X_title, X_authours, X_groups, X_keywords, X_topics, X_abstract]) # 稀疏向量拼接 print(X_passage.shape)(398, 4691)4 聚类算法 4.1 简单聚类 直接采用KMeans简单聚类 k 5 #假设有5个类别 model KMeans(n_clustersk, initk-means, max_iter100, n_init1) model.fit(X_simple) labels model.labels_ data_df[label] labels labels结果 array([1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 4, 1, 1, 1, 1, 3,2, 1, 0, 1, 1, 2, 1, 1, 4, 0, 1, 1, 4, 3, 1, 4, 1, 4, 1, 3, 1, 0,4, 3, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 4, 1, 3, 1, 1, 4,3, 4, 1, 3, 4, 2, 1, 1, 1, 1, 3, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4,1, 1, 1, 1, 0, 1, 1, 2, 1, 4, 1, 1, 3, 1, 1, 1, 3, 2, 4, 0, 1, 3,4, 2, 1, 3, 1, 2, 1, 4, 1, 1, 1, 1, 1, 0, 4, 1, 1, 0, 1, 0, 1, 3,1, 1, 4, 4, 1, 1, 0, 1, 3, 1, 1, 1, 1, 1, 0, 1, 0, 4, 1, 1, 0, 2,1, 2, 1, 0, 1, 1, 1, 4, 3, 1, 2, 1, 4, 3, 0, 2, 3, 4, 0, 3, 3, 1,1, 2, 4, 3, 3, 4, 1, 1, 3, 2, 1, 0, 4, 4, 4, 4, 2, 1, 1, 3, 0, 4,2, 1, 2, 0, 1, 1, 3, 3, 0, 1, 1, 1, 1, 1, 3, 1, 1, 1, 0, 1, 0, 1,1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 1, 2, 3, 0, 2, 3, 1, 1,1, 1, 1, 4, 1, 0, 1, 1, 2, 1, 4, 1, 1, 1, 0, 1, 1, 1, 1, 4, 1, 1,1, 4, 0, 1, 1, 1, 4, 1, 4, 2, 1, 1, 1, 2, 1, 3, 1, 0, 1, 2, 2, 1,1, 3, 1, 1, 1, 3, 2, 1, 3, 4, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 4,0, 1, 1, 3, 0, 4, 2, 0, 1, 4, 1, 2, 4, 3, 1, 1, 3, 3, 3, 1, 1, 1,4, 1, 1, 2, 2, 1, 4, 4, 2, 1, 3, 0, 4, 4, 1, 0, 0, 4, 3, 1, 1, 1,3, 1, 3, 1, 3, 0, 1, 4, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 2, 1, 1,3, 1, 3, 0, 1, 1, 0, 1, 1, 3, 1, 1, 2, 2, 1, 2, 4, 0, 1, 1, 1, 3,1, 1])总结分类规律 data_df[data_df[label]4][[title, groups, topics]]titlegroupstopics2A Generalization of Probabilistic Serial to Ra...Game Theory and Economic Paradigms (GTEP)GTEP: Game Theory\nGTEP: Social Choice / Voting16Multi-Organ Exchange: The Whole is Greater tha...Applications (APP)\nGame Theory and Economic P...APP: Biomedical / Bioinformatics\nGTEP: Auctio...30The Computational Rise and Fall of FairnessGame Theory and Economic Paradigms (GTEP)GTEP: Social Choice / Voting34Lazy Defenders Are Almost Optimal Against Dili...Game Theory and Economic Paradigms (GTEP)GTEP: Game Theory\nGTEP: Imperfect Information37Game-theoretic Resource Allocation for Protect...Applications (APP)\nGame Theory and Economic P...APP: Security and Privacy\nGTEP: Game Theory\n...39A Strategy-Proof Online Auction with Time Disc...Game Theory and Economic Paradigms (GTEP)GTEP: Auctions and Market-Based Systems44Simultaneous Cake CuttingGame Theory and Economic Paradigms (GTEP)GTEP: Social Choice / Voting57Solving Imperfect Information Games Using Deco...Game Theory and Economic Paradigms (GTEP)GTEP: Game Theory\nGTEP: Equilibrium\nGTEP: Im...60Online (Budgeted) Social ChoiceGame Theory and Economic Paradigms (GTEP)GTEP: Game Theory\nGTEP: Social Choice / Votin...65Fixing a Balanced Knockout TournamentGame Theory and Economic Paradigms (GTEP)GTEP: Game Theory\nGTEP: Social Choice / Voting67Incomplete Preferences in Single-Peaked Electo...Game Theory and Economic Paradigms (GTEP)GTEP: Social Choice / Voting\nGTEP: Imperfect ...70A Control Dichotomy for Pure Scoring RulesGame Theory and Economic Paradigms (GTEP)GTEP: Social Choice / Voting77Biased GamesGame Theory and Economic Paradigms (GTEP)GTEP: Game Theory\nGTEP: Equilibrium79Preference Elicitation and Interview Minimizat...Game Theory and Economic Paradigms (GTEP)\nMul...APP: Computational Social Science\nGTEP: Socia...87Minimising Undesired Task Costs in Multi-robot...Multiagent Systems (MAS)\nRobotics (ROB)GTEP: Auctions and Market-Based Systems\nMAS: ...97Congestion Games for V2G-Enabled EV ChargingComputational Sustainability and AI (CSAI)\nGa...CSAI: Modeling the interactions of agents with...106Evolutionary dynamics of learning algorithms o...Game Theory and Economic Paradigms (GTEP)\nMul...GTEP: Adversarial Learning\nGTEP: Equilibrium\...110A Game-theoretic Analysis of Catalog OptimizationGame Theory and Economic Paradigms (GTEP)\nKno...GTEP: Auctions and Market-Based Systems\nGTEP:...117Automatic Game Design via Mechanic GenerationGame Playing and Interactive Entertainment (GPIE)GPIE: AI in Game Design\nGPIE: Procedural Cont...124False-Name Bidding and Economic Efficiency in ...Game Theory and Economic Paradigms (GTEP)\nMul...GTEP: Auctions and Market-Based Systems\nGTEP:...134Mechanism Design for Scheduling with Uncertain...Game Theory and Economic Paradigms (GTEP)\nMul...GTEP: Auctions and Market-Based Systems\nGTEP:...135Robust Winners and Winner Determination Polici...Game Theory and Economic Paradigms (GTEP)\nMul...APP: Computational Social Science\nGTEP: Socia...149Regret Transfer and Parameter OptimizationGame Theory and Economic Paradigms (GTEP)GTEP: Game Theory\nGTEP: Equilibrium\nGTEP: Im...161Trading Multiple Indivisible Goods with Indiff...Game Theory and Economic Paradigms (GTEP)GTEP: Game Theory\nGTEP: Social Choice / Votin...166Item Bidding for Combinatorial Public ProjectsGame Theory and Economic Paradigms (GTEP)\nMul...GTEP: Game Theory\nGTEP: Coordination and Coll...171Increasing VCG revenue by decreasing the quali...Game Theory and Economic Paradigms (GTEP)\nMul...GTEP: Auctions and Market-Based Systems\nMAS: ...178Theory of Cooperation in Complex Social NetworksGame Theory and Economic Paradigms (GTEP)\nMul...GTEP: Game Theory\nGTEP: Coordination and Coll...181Prices Matter for the Parameterized Complexity...Game Theory and Economic Paradigms (GTEP)\nMul...GTEP: Game Theory\nGTEP: Social Choice / Votin...188Incentives for Truthful Information Elicitatio...Game Theory and Economic Paradigms (GTEP)\nHum...GTEP: Game Theory\nGTEP: Equilibrium\nGTEP: Im...189Equilibria in Epidemic Containment GamesApplications (APP)\nComputational Sustainabili...APP: Security and Privacy\nCSAI: Modeling the ...190Beat the Cheater: Computing Game-Theoretic Str...Game Theory and Economic Paradigms (GTEP)\nMul...GTEP: Game Theory\nGTEP: Equilibrium\nGTEP: Im...191A Characterization of the Single-Peaked Single...Game Theory and Economic Paradigms (GTEP)\nMul...GTEP: Game Theory\nGTEP: Social Choice / Votin...197Efficient buyer groups for prediction-of-use e...Computational Sustainability and AI (CSAI)\nGa...CSAI: Modeling the interactions of agents with...224On Detecting Nearly Structured Preference Prof...Game Theory and Economic Paradigms (GTEP)\nMul...GTEP: Social Choice / Voting233Betting Strategies, Market Selection, and the ...Game Theory and Economic Paradigms (GTEP)GTEP: Auctions and Market-Based Systems245Leveraging Fee-Based, Imperfect Advisors in Hu...Humans and AI (HAI)HAI: Human-Computer Interaction252On the Structure of Synergies in Cooperative G...Game Theory and Economic Paradigms (GTEP)GTEP: Game Theory261On the Incompatibility of Efficiency and Strat...Game Theory and Economic Paradigms (GTEP)GTEP: Game Theory\nGTEP: Social Choice / Voting265Regret-based Optimization and Preference Elici...Game Theory and Economic Paradigms (GTEP)GTEP: Game Theory270Modal Ranking: A Uniquely Robust Voting RuleGame Theory and Economic Paradigms (GTEP)GTEP: Social Choice / Voting272Extending Tournament SolutionsGame Theory and Economic Paradigms (GTEP)GTEP: Social Choice / Voting295On Computing Optimal Strategies in Open List P...Game Theory and Economic Paradigms (GTEP)\nMul...GTEP: Game Theory\nGTEP: Social Choice / Votin...303Envy-Free Division of Sellable GoodsGame Theory and Economic Paradigms (GTEP)GTEP: Auctions and Market-Based Systems\nGTEP:...304Potential-Aware Imperfect-Recall Abstraction w...Game Theory and Economic Paradigms (GTEP)GTEP: Game Theory\nGTEP: Imperfect Information307Voting with Rank Dependent Scoring RulesGame Theory and Economic Paradigms (GTEP)GTEP: Auctions and Market-Based Systems\nGTEP:...313Incentivizing High-quality Content from Hetero...Game Theory and Economic Paradigms (GTEP)\nMul...GTEP: Game Theory\nGTEP: Equilibrium\nGTEP: Im...317New Models for Competitive ContagionGame Theory and Economic Paradigms (GTEP)GTEP: Game Theory\nGTEP: Equilibrium320Approximate Equilibrium and Incentivizing Soci...Game Theory and Economic Paradigms (GTEP)GTEP: Game Theory\nGTEP: Coordination and Coll...330Internally Stable Kidney ExchangeMultiagent Systems (MAS)GTEP: Auctions and Market-Based Systems\nMAS: ...336Strategyproof exchange with multiple private e...Game Theory and Economic Paradigms (GTEP)GTEP: Auctions and Market-Based Systems\nGTEP:...337Mechanism design for mobile geo-location adver...Game Theory and Economic Paradigms (GTEP)\nMul...GTEP: Auctions and Market-Based Systems\nGTEP:...342A Multiarmed Bandit Incentive Mechanism for Cr...Computational Sustainability and AI (CSAI)\nGa...CSAI: Modeling the interactions of agents with...343Binary Aggregation by Selection of the Most Re...Game Theory and Economic Paradigms (GTEP)\nKno...GTEP: Social Choice / Voting\nKRR: Preferences...347Bounding the Support Size in Extensive Form Ga...Game Theory and Economic Paradigms (GTEP)GTEP: Game Theory\nGTEP: Equilibrium\nGTEP: Im...359The Fisher Market Game: Equilibrium and WelfareGame Theory and Economic Paradigms (GTEP)GTEP: Auctions and Market-Based Systems\nGTEP:...366On the Axiomatic Characterization of Runoff Vo...Game Theory and Economic Paradigms (GTEP)GTEP: Social Choice / Voting370Solving Zero-Sum Security Games in Discretized...Game Theory and Economic Paradigms (GTEP)\nMul...GTEP: Game Theory\nGTEP: Equilibrium\nMAS: Mul...390Using Response Functions to Measure Strategy S...Game Theory and Economic Paradigms (GTEP)GTEP: Game Theory\nGTEP: Equilibrium\nGTEP: Im... 通过查看每组聚类结果得知: 0该类主要包含 VIS 计算机视觉 等文章1该类主要包含 AIW 及网络类文章2该类主要包含 NMLA 及算法类文章3该类主要包含 GTEP 等游戏类文章4该类主要包含 AIW 及NLP等文章 通过上述结果可知简单聚类可以将文章分为几类但是相互有所粘连 # 创建一个TSNE对象指定要降维到的维数为2随机数种子为RANDOM_STATE tsne sklearn.manifold.TSNE(n_components2, random_stateRANDOM_STATE, initrandom)# 调用TSNE对象的fit_transform方法传入X_simple数据集返回一个降维后的数据数组赋值给X_tsne X_tsne tsne.fit_transform(X_simple)sns.scatterplot(xX_tsne[:,0], yX_tsne[:,1], huelabels, palettedeep) # 散点图​ ​ 通过上图显示简单聚类可以成功聚类但是结果有所粘连 4.2 复杂聚类 通过使用3.2中得到的X_pasage进行聚类并聚集10类 model KMeans(n_clusters10, initk-means, max_iter100, n_init1, random_stateRANDOM_STATE) # KMean聚类 model.fit(X_passage) labels model.labels_ data_df[label] labels labelsarray([2, 4, 3, 4, 0, 0, 8, 2, 4, 0, 5, 6, 2, 4, 6, 8, 3, 4, 4, 0, 1, 9,3, 2, 2, 8, 4, 5, 4, 8, 3, 5, 2, 2, 7, 9, 2, 7, 8, 7, 2, 1, 2, 6,3, 9, 2, 4, 4, 5, 4, 4, 4, 4, 2, 1, 9, 7, 1, 2, 3, 2, 4, 8, 4, 3,9, 3, 8, 9, 3, 9, 2, 2, 8, 8, 9, 7, 8, 3, 1, 4, 4, 0, 8, 1, 2, 3,8, 2, 2, 4, 6, 1, 2, 5, 0, 7, 8, 4, 9, 4, 2, 4, 6, 5, 7, 6, 8, 9,7, 5, 0, 9, 3, 5, 4, 7, 2, 0, 4, 2, 6, 6, 3, 8, 2, 6, 2, 9, 2, 1,6, 2, 3, 3, 8, 0, 6, 4, 9, 2, 6, 4, 2, 8, 5, 2, 6, 7, 2, 0, 6, 3,2, 5, 4, 6, 2, 4, 2, 3, 9, 2, 5, 8, 3, 1, 9, 3, 9, 3, 6, 9, 9, 2,8, 5, 3, 9, 9, 3, 8, 0, 1, 5, 4, 5, 3, 7, 7, 3, 5, 2, 2, 6, 6, 3,5, 2, 5, 6, 8, 4, 4, 9, 6, 8, 0, 1, 2, 2, 6, 4, 8, 4, 6, 2, 6, 0,4, 2, 8, 1, 3, 2, 4, 4, 4, 8, 6, 8, 2, 7, 4, 5, 3, 6, 5, 8, 2, 4,2, 2, 4, 4, 8, 5, 2, 2, 5, 0, 7, 2, 2, 4, 5, 0, 2, 2, 2, 3, 4, 0,2, 7, 5, 4, 1, 4, 3, 2, 3, 5, 2, 2, 8, 5, 2, 9, 4, 6, 2, 5, 5, 0,2, 9, 2, 4, 1, 9, 5, 2, 9, 3, 9, 4, 2, 2, 2, 8, 2, 3, 7, 8, 4, 3,9, 8, 5, 1, 6, 7, 5, 6, 2, 7, 2, 5, 7, 9, 8, 6, 9, 1, 9, 2, 2, 2,3, 2, 8, 5, 5, 8, 7, 3, 5, 8, 1, 6, 7, 3, 8, 6, 6, 7, 9, 0, 0, 4,9, 2, 1, 2, 9, 6, 2, 7, 8, 4, 6, 8, 2, 2, 3, 4, 1, 0, 7, 5, 2, 8,9, 4, 1, 6, 2, 8, 6, 0, 9, 9, 6, 4, 5, 5, 2, 5, 7, 6, 2, 1, 4, 9,4, 2])data_df[data_df[label]9][[title, groups, topics]]titlegroupstopics21The Complexity of Reasoning with FODD and GFODDKnowledge Representation and Reasoning (KRR)KRR: Automated Reasoning and Theorem Proving\n...35PREGO: An Action Language for Belief-Based Cog...Knowledge Representation and Reasoning (KRR)KRR: Action, Change, and Causality\nKRR: Knowl...45Recovering from Selection Bias in Causal and S...Knowledge Representation and Reasoning (KRR)\n...KRR: Action, Change, and Causality\nRU: Bayesi...56A Parameterized Complexity Analysis of General...Game Playing and Interactive Entertainment (GP...GTEP: Social Choice / Voting\nKRR: Computation...66Querying Inconsistent Description Logic Knowle...Knowledge Representation and Reasoning (KRR)KRR: Ontologies\nKRR: Computational Complexity...69Knowledge Graph Embedding by Translating on Hy...Knowledge Representation and Reasoning (KRR)\n...KRR: Knowledge Representation (General/Other)\...71Fast consistency checking of very large real-w...Knowledge Representation and Reasoning (KRR)\n...KRR: Geometric, Spatial, and Temporal Reasonin...76The Computational Complexity of Structure-Base...Knowledge Representation and Reasoning (KRR)\n...KRR: Action, Change, and Causality\nKRR: Compu...100A Tractable Approach to ABox Abduction over De...Knowledge Representation and Reasoning (KRR)KRR: Description Logics\nKRR: Diagnosis and Ab...109Reasoning on LTL on Finite Traces: Insensitivi...Knowledge Representation and Reasoning (KRR)AIW: AI for web services: semantic description...113Programming by Example using Least General Gen...Applications (APP)\nHeuristic Search and Optim...APP: Intelligent User Interfaces\nAPP: Other A...129Using Model-Based Diagnosis to Improve Softwar...Applications (APP)\nKnowledge Representation a...APP: Other Applications\nKRR: Automated Reason...140Confident Reasoning on Raven’s Progressive Mat...Knowledge Representation and Reasoning (KRR)KRR: Geometric, Spatial, and Temporal Reasonin...162SenticNet 3: A Common and Common-Sense Knowled...Cognitive Systems (CS)\nKnowledge Representati...CS: Conceptual inference and reasoning\nKRR: C...168Backdoors to PlanningKnowledge Representation and Reasoning (KRR)\n...KRR: Computational Complexity of Reasoning\nPS...170Datalog Rewritability of Disjunctive Datalog P...Knowledge Representation and Reasoning (KRR)KRR: Ontologies\nKRR: Automated Reasoning and ...173The Most Uncreative Examinee: A First Step tow...Knowledge Representation and Reasoning (KRR)KRR: Automated Reasoning and Theorem Proving174Acquiring Commonsense Knowledge for Sentiment ...Human-Computation and Crowd Sourcing (HCC)\nKn...HCC: Domain-specific implementation challenges...179Explanation-Based Approximate Weighted Model C...Knowledge Representation and Reasoning (KRR)\n...KRR: Logic Programming\nRU: Probabilistic Infe...180A Knowledge Compilation Map for Ordered Real-V...Knowledge Representation and Reasoning (KRR)KRR: Computational Complexity of Reasoning\nKR...205A reasoner for the RCC-5 and RCC-8 calculi ext...Knowledge Representation and Reasoning (KRR)\n...KRR: Computational Complexity of Reasoning\nKR...279Computing General First-order Parallel and Pri...Knowledge Representation and Reasoning (KRR)KRR: Common-Sense Reasoning\nKRR: Nonmonotonic...287Data Quality in Ontology-based Data Access: Th...Knowledge Representation and Reasoning (KRR)APP: Other Applications\nKRR: Ontologies\nKRR:...291Diagnosing Analogue Linear Systems Using Dynam...Knowledge Representation and Reasoning (KRR)KRR: Diagnosis and Abductive Reasoning294Elementary Loops RevisitedKnowledge Representation and Reasoning (KRR)KRR: Logic Programming296Joint Morphological Generation and Syntactic L...NLP and Knowledge Representation (NLPKR)NLPKR: Natural Language Processing (General/Ot...308Implementing GOLOG in Answer Set ProgrammingKnowledge Representation and Reasoning (KRR)\n...KRR: Action, Change, and Causality\nKRR: Logic...321Qualitative Reasoning with Modelica ModelsApplications (APP)\nKnowledge Representation a...APP: Other Applications\nKRR: Knowledge Repres...324Pathway Specification and Comparative Queries:...Knowledge Representation and Reasoning (KRR)APP: Biomedical / Bioinformatics\nKRR: Knowled...326Testable Implications of Linear Structural Equ...Knowledge Representation and Reasoning (KRR)\n...KRR: Action, Change, and Causality\nRU: Graphi...348Exploiting Support Sets for Answer Set Program...Knowledge Representation and Reasoning (KRR)KRR: Ontologies\nKRR: Description Logics\nKRR:...352Local-To-Global Consistency Implies Tractabili...Knowledge Representation and Reasoning (KRR)KRR: Computational Complexity of Reasoning\nKR...356Exploring the Boundaries of Decidable Verifica...Knowledge Representation and Reasoning (KRR)KRR: Action, Change, and Causality\nKRR: Geome...374Managing Change in Graph-structured Data Using...Knowledge Representation and Reasoning (KRR)KRR: Computational Complexity of Reasoning\nKR...382Coactive Learning for Locally Optimal Problem ...Humans and AI (HAI)\nKnowledge Representation ...HCC: Active learning from imperfect human labe...383Large Scale Analogical ReasoningCognitive Systems (CS)\nKnowledge Representati...CS: Conceptual inference and reasoning\nCS: St...395Contraction and Revision over DL-Lite TBoxesKnowledge Representation and Reasoning (KRR)KRR: Belief Change\nKRR: Description Logics\nK... 通过查看每组聚类结果可知每类结果有较为清晰的特征 0该类主要包含 VIS 等视觉相关文章1该类主要包含 AIW 及 ROB 等文章2该类主要包含 NMLA 机器学习等文章3该类主要包含 GTEP 游戏类文章4该类主要包含 AIW 及社交网络等文章5该类主要包含 SCS 和 HSO等搜索类文章6该类主要包含 PS 及 CS 策略计划类文章7该类主要包含 GTEP 等文章8该类主要保护 APP 及 MLA等文章9该类主要包含 KRR 知识表示与推理等文章 # 创建一个TSNE对象指定要降维到的维数为2随机数种子为RANDOM_STATE tsne sklearn.manifold.TSNE(n_components2, random_stateRANDOM_STATE, initrandom)# 调用TSNE对象的fit_transform方法传入X_passage数据集返回一个降维后的数据数组赋值给X_tsne X_tsne tsne.fit_transform(X_passage)sns.scatterplot(xX_tsne[:,0], yX_tsne[:,1], huelabels, palettedeep) # 散点图​ ​ 从上图可知通过作者、词干等分词后聚类效果更好 5 聚类效果分析 本章分析不同k值对聚类效果的影响以及该数据集中k取什么效果最好 k_range range(5,15) label_dict {} for k in k_range:model KMeans(n_clustersk, initk-means, max_iter100, n_init1, random_stateRANDOM_STATE)model.fit(X_passage)labels model.labels_label_dict[k]labels label_dict[7]array([0, 0, 5, 6, 3, 3, 3, 0, 6, 3, 4, 0, 0, 6, 2, 3, 5, 6, 6, 3, 3, 1,5, 0, 0, 3, 6, 4, 6, 6, 5, 4, 0, 0, 5, 1, 0, 5, 6, 5, 0, 1, 0, 3,5, 1, 0, 3, 3, 4, 6, 6, 6, 3, 0, 6, 1, 5, 3, 0, 5, 0, 6, 3, 6, 5,1, 5, 3, 1, 5, 1, 0, 0, 6, 3, 1, 5, 3, 5, 6, 3, 6, 3, 3, 6, 0, 5,3, 0, 0, 6, 2, 3, 0, 4, 3, 5, 3, 3, 1, 6, 0, 6, 1, 4, 5, 2, 3, 1,5, 4, 3, 1, 5, 4, 6, 3, 0, 3, 3, 0, 3, 2, 5, 3, 0, 2, 0, 1, 0, 1,1, 0, 5, 5, 3, 3, 2, 3, 1, 0, 3, 6, 0, 3, 4, 0, 2, 5, 0, 3, 3, 5,0, 4, 6, 2, 0, 6, 0, 5, 1, 0, 4, 3, 5, 6, 2, 5, 1, 5, 2, 1, 1, 0,3, 4, 5, 1, 1, 5, 3, 3, 1, 4, 3, 6, 5, 5, 5, 5, 4, 0, 0, 1, 2, 5,4, 0, 4, 2, 3, 3, 6, 1, 2, 3, 3, 6, 0, 3, 1, 3, 3, 6, 2, 0, 2, 3,6, 3, 3, 3, 5, 0, 3, 6, 3, 3, 1, 3, 0, 5, 6, 4, 5, 2, 4, 3, 0, 3,0, 0, 6, 6, 3, 4, 0, 0, 4, 3, 5, 0, 0, 6, 2, 3, 0, 0, 0, 5, 6, 3,0, 5, 4, 0, 6, 6, 5, 0, 5, 4, 0, 0, 3, 4, 0, 1, 3, 2, 0, 4, 4, 3,0, 1, 0, 6, 6, 1, 4, 0, 1, 5, 3, 6, 0, 0, 0, 3, 0, 5, 5, 0, 6, 5,1, 3, 4, 1, 2, 5, 4, 2, 0, 5, 0, 4, 5, 1, 3, 1, 1, 1, 1, 0, 0, 0,5, 0, 3, 4, 4, 3, 5, 5, 4, 3, 1, 2, 5, 5, 3, 2, 2, 5, 1, 3, 3, 6,1, 0, 1, 0, 1, 2, 0, 5, 3, 3, 1, 3, 0, 0, 5, 6, 6, 3, 5, 4, 0, 3,1, 3, 6, 2, 3, 3, 2, 3, 1, 1, 3, 3, 4, 4, 0, 4, 5, 2, 0, 6, 6, 1,3, 0])# 创建2行5列的子图布局 fig, axes plt.subplots(2, 5, figsize(25, 10))# 将10个子图填充到子图布局中 for k, label in label_dict.items():row, col divmod(k-5, 5) # 根据k计算在子图布局中的行和列位置ax axes[row, col]sns.scatterplot(xX_tsne[:, 0], yX_tsne[:, 1], huelabel, palettedeep, axax)ax.set_title(cluster %d % k)# 调整子图布局 plt.tight_layout() plt.show()​ ​ # 创建一个TSNE对象指定要降维到的维数为3随机数种子为RANDOM_STATE tsne sklearn.manifold.TSNE(n_components3, random_stateRANDOM_STATE, initrandom)# 调用TSNE对象的fit_transform方法传入X_passage数据集返回一个降维后的数据数组赋值给X_tsne X_tsne tsne.fit_transform(X_passage)# 创建一个大画布包含10个子图 fig, axes plt.subplots(2, 5, figsize(25, 10), subplot_kw{projection: 3d})# 将10个子图填充到大画布中 for k, ax in zip(label_dict.keys(), axes.flatten()):# 绘制散点图指定散点的大小ax.scatter(X_tsne[:, 0], X_tsne[:, 1], X_tsne[:, 2], clabel_dict[k], cmapDark2)# 设置标题指定标题的字体大小ax.set_title(cluster %d % k, fontsize16)# 调整子图布局 plt.tight_layout() plt.show()​ ​ 以上可见用2d和3d图展示聚类效果在5到14的Kmeans中没有聚类效果特别好的但是感觉取7时聚类效果更好一点

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/87541.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何查看vs中建设好的网站开通招聘网站如何做分录

2023年8月30日,EESA第二届中国国际储能展览会在苏州国际博览中心拉开帷幕,科士达以“零碳光储数能未来”为主题,亮相G3-20展台,多维度展现户用光储、工商业储能、大型储能等解决方案,彰显安全、高效、可靠的产品性能和…

一起做网站广州下载中心官方网站建设银行

1、匿名对象 匿名:没有名字 生活层面:匿名投票、匿名信... 程序层面: 有名对象和匿名对象 有名对象: 理解:有名字的对象 模板: 数据类型 对象名 new 数据类型(...); 匿名对象: 理…

关于网站建设的好处网站建设教程主页

本人详解 作者:王文峰,参加过 CSDN 2020年度博客之星,《Java王大师王天师》作者 公众号:山峯草堂,非技术多篇文章,专注于天道酬勤的 Java 开发问题、中国国学、传统文化和代码爱好者的程序人生,期待你的关注和支持!本人外号:神秘小峯 转载说明:务必注明来源(注明:…

天津平台网站建设推荐北京百度seo排名点击软件

1 命名规范 1.1 Go是一门区分大小写的语言。 命名规则涉及变量、常量、全局函数、结构、接口、方法等的命名。 Go语言从语法层面进行了以下限定:任何需要对外暴露的名字必须以大写字母开头,不需要对外暴露的则应该以小写字母开头。 当命名&#xff08…

淄博企业网站建设网页升级紧急通知区域

这是我去额尔古纳的公路上,隔着车窗拍摄的照片。三幅照片可以感觉时间的变化,从午后到黄昏,光和色彩逐渐朦胧凝重,像蒙古画家朝戈的油画。这样的景象在草原上随处可见。沙石路只有在草原的深处可以见到,坐在车里身体会…

.net开发网站的优点网站建设广告平台推广

Python2 与 Python3 print 不换行 分类 编程技术 本文主要介绍在 Python2 与 Python3 下 print 实现不换行的效果。 Python 3.x 在 Python 3.x 中,我们可以在 print() 函数中添加 end"" 参数,这样就可以实现不换行效果。 在 Python3 中&a…

游戏网站建设视频教程老网站做seo能不能重新注册

我最近读了一个非常聪明的技巧来完成你所要求的工作。简而言之,你只需要使用text-align:justify;在容器元素上实现这一点,结合一个额外的不可见块。这是因为内联块元素被视为文本内容的一部分,每个元素实际上是单个单词。使用对齐…

苏州建设公司网站建设奇迹网站架设视频

反转单链表 题目描述 题目分析 先来说迭代的思想: 上面next cur->next应该放在cur->next pre前面执行,这里笔误 再来说递归的思想: 题目代码 这个代码里面我加了我自己写的测试数据,自己可以去找对应的部分&#xff0c…

机场建设相关网站站长工具网站排名

前言 只要你的小程序超过一个页面那么可能会需要涉及到页面参数的传递,下面我总结了 4 种页面方法。 路径传递 通过在url后面拼接参数,参数与路径之间使用 ? 分隔,参数键与参数值用 相连,不同参数用 & 分隔;如…

上海市普陀区建设规划局网站长沙如何优化排名

目录 一、防火墙基本认识 1. 安全技术 2. 防火墙分类 3. 防火墙工具介绍 二、iptables 1. 概述 2. 五表五链 3. 语法 3.1 基本语法 3.2 语法总结 4. 管理选项 5. 通用匹配 6. 控制类型 7. iptables应用 7.1 新增防火墙规则 7.2 查看规则表 7.3 黑白名单 7.4 …

进入网站后台ftp空间后怎样上传wordpress建的网站吗

1 花盆 是高度比较低的盆,只有一个下2;上面分两个 1 2 盆边缘颜色深,上面靠近外面的颜色浅,正面颜色稍微深一点,画两条竖的浅色线,作为装饰 2 花盆中的沙石 沙子颜色深一点,中间有浅一点的线…

全球网站排名查询网做选择网站

GPIO控制-外部中断 文章目录 GPIO控制-外部中断1、CH32V307中断介绍2、GPIO外部中断相关API3、外部中断使用代码实现CH32V3x 系列内置可编程快速中断控制器(PFIC– Programmable Fast Interrupt Controller),最多支持255 个中断向量。当前系统管理了88 个外设中断通道和8 个…

网站开发适合女生不网络架构方案规划设计和实施

目录 前言: 1.HTTPS协议理论 1.1协议概念 1.2加密 2.两类加密 2.1对称加密 2.2非对称加密 3.引入“证书” 3.1证书概念 3.2数据证书内容 3.3数据签名 4.总结 前言: 了解完HTTP协议后,HTTPS协议是HTTP协议的升级加强版&#xff0c…

做一款网站万站霸屏

文章目录 【Oracle】如何给物化视图分区给物化视图进行分区的例 【声明】文章仅供学习交流,观点代表个人,与任何公司无关。 编辑|SQL和数据库技术(ID:SQLplusDB) 收集Oracle数据库内存相关的信息 【Oracle】ORA-32017和ORA-00384错误处理 【Oracle】设置…

淘宝导购网站源码学校网站建设配套制度

完美撤离!暗区突围测试资格获取指南 超简单的暗区突围资格申请! 最近游戏圈关注度最高的一件事莫过于暗区突围国际服的上线,随着暗区突围PC端的上线,这款游戏的测试资格申请成为了玩家们心头的一个大问题,许多玩家爱不…

网站建设怎么做呢计算机网站建设教程

首先,单例模式分为饿汉模式和懒汉模式 单例模式有什么用呢? 可以保证在程序运行过程中,一个类只有一个实例,而且该实例易于供外界访问,从而方便的控制了实例个数,并节约系统资源。 例如:DataSource&#x…

大连企业网站模板北京网络营销公司哪家好

2019国考成绩要出来了不?2019国考成绩何时出来?现在已是1月中旬,许多考生对于自己的国考笔试成绩都非常期待,而最近风声四起,搞得考生们人心慌慌,那么2019国考成绩要出来了不?现在我们一起来分析…

东莞微网站制作公司有的网站域名解析错误

Xamarin iOS编写第一个应用程序创建工程 在Xcode以及Xamarin安装好后,就可以在Xamarin Studio中编写程序了。本节将主要讲解在Xamarin Studio中如何进行工程的创建以及编写代码等内容XamariniOS编写第一个应用程序创建工程本文选自Xamarin iOS开发实战大学霸。 1.3.…

电子商务网站建设课设学生体会网站推广赚钱吗

怎样区分好用的特征 避免无意义的信息避免重复性的信息避免复杂的信息 激活函数的选择 浅层神经网络,可以随便尝试各种激活函数 深层神经网络,不可随机选择各种激活函数,这涉及到梯度爆炸和梯度消失。(给出梯度爆炸和梯度消失的…

到国外建网站自动点击器安卓

键盘输入一组人员的姓名、性别、年龄等信息,信息间采用空格分隔,每人一行,空行回车结束录入,示例格式如下: 张三 男 23 李四 女 21 王五 男 18 计算并输出这组人员的平均年龄(保留2位小数)和其中男性人数,格式如下: 平…