【yolo】YOLO训练参数输入之模型输入尺寸

模型输入尺寸是YOLO训练和推理过程中非常重要的参数之一。YOLO要求输入图像的尺寸是固定的,通常为正方形(如416×416、640×640等)。这个尺寸直接影响模型的性能和速度。以下是对模型输入尺寸的详细介绍:


1. 模型输入尺寸的作用

  • 统一输入:YOLO将输入图像划分为S×S的网格,每个网格负责预测目标。因此,输入图像必须是固定尺寸的正方形。
  • 影响性能:较大的输入尺寸可以提高检测精度,但会降低推理速度;较小的输入尺寸会加快推理速度,但可能降低精度。
  • 内存占用:输入尺寸越大,模型占用的显存越多。

2. 如何设置输入尺寸

在YOLO的配置文件(如yolov3.cfg)中,可以通过以下参数设置输入尺寸:

  • width:输入图像的宽度。
  • height:输入图像的高度。

示例:

[net]
width=416
height=416

常见的输入尺寸包括:

  • 416×416:平衡速度和精度,适合大多数场景。
  • 608×608:更高的精度,但速度较慢,适合对精度要求较高的场景。
  • 320×320:更快的推理速度,适合实时性要求高的场景。

3. 输入尺寸的选择建议

  • 根据硬件性能选择:如果显存充足且需要高精度,可以选择较大的输入尺寸(如608×608);如果显存有限或需要实时推理,可以选择较小的输入尺寸(如320×320)。
  • 根据任务需求选择:如果任务中的目标较小,建议使用较大的输入尺寸以提高检测精度;如果目标较大,可以使用较小的输入尺寸。
  • 实验调优:可以尝试不同的输入尺寸,通过验证集评估模型的精度和速度,选择最适合的尺寸。

4. 输入尺寸对训练的影响

  • 数据预处理:在训练过程中,输入图像会被缩放到指定的尺寸。如果原始图像不是正方形,会进行填充(padding)以保持宽高比。
  • 锚点框(Anchor Boxes):YOLO使用锚点框来预测目标边界框。输入尺寸的变化会影响锚点框的尺度,因此需要根据输入尺寸调整锚点框的参数。

5. 输入尺寸对推理的影响

  • 推理速度:输入尺寸越大,模型的计算量越大,推理速度越慢。
  • 检测精度:输入尺寸越大,模型对细节的捕捉能力越强,检测精度越高。

6. 注意事项

  • 锚点框调整:如果修改了输入尺寸,可能需要重新计算锚点框(Anchor Boxes)的尺寸,以适应新的输入尺寸。
  • 数据增强:较大的输入尺寸可能需要更强的数据增强策略(如随机裁剪、缩放)以避免过拟合。
  • 硬件限制:较大的输入尺寸会占用更多显存,确保你的硬件能够支持。

通过合理设置模型输入尺寸,你可以在精度和速度之间找到最佳平衡点,从而更好地满足实际应用的需求。

模型的输入尺寸,和图片的尺寸无关?

并不是无关,而是YOLO在训练时会自动调整输入图片的大小,以适应模型的固定输入尺寸(如416×416)。这个过程是YOLO数据预处理的一部分,确保所有输入图片都能被统一处理。

是的,YOLO在训练时会自动调整输入图片的大小,以适应模型的固定输入尺寸(如416×416)。这个过程是YOLO数据预处理的一部分,确保所有输入图片都能被统一处理。以下是YOLO在训练时如何处理输入图片的详细说明:


1. YOLO的图片预处理流程

在训练过程中,YOLO会对每张输入图片进行以下处理:

1.1 缩放(Resize)
  • 原始图片会被缩放到模型的输入尺寸(如416×416)。
  • 如果原始图片的宽高比与模型输入尺寸不一致,YOLO会进行**填充(Padding)**以保持宽高比。
1.2 填充(Padding)
  • 填充的目的是将非正方形的图片调整为正方形,同时保留原始图片的内容。
  • 填充通常使用黑色像素(值为0)或灰色像素。
1.3 归一化(Normalization)
  • 缩放和填充后的图片会被归一化到0~1的范围,以便输入到神经网络中。
1.4 边界框调整
  • 原始图片的边界框(Bounding Box)会根据缩放比例进行调整,以适应新的输入尺寸。

2. YOLO如何自动调整图片大小

YOLO的预处理代码(通常在Darknet框架中实现)会自动完成上述步骤。以下是其工作原理:

2.1 缩放比例计算
  • YOLO会根据原始图片的宽高和模型输入尺寸计算缩放比例。
  • 例如,如果原始图片尺寸为1920×1080,模型输入尺寸为416×416,则缩放比例为:
    scale = min(416 / 1920, 416 / 1080) = 416 / 1920 ≈ 0.2167
    
2.2 缩放图片
  • 根据缩放比例调整图片大小:
    new_w = 1920 * 0.2167 ≈ 416
    new_h = 1080 * 0.2167 ≈ 234
    
2.3 填充图片
  • 将缩放后的图片填充到416×416:
    delta_h = 416 - 234 = 182
    top = delta_h // 2 = 91
    bottom = delta_h - top = 91
    
    在高度方向填充91像素的黑色区域。
2.4 边界框调整
  • 原始边界框的坐标会根据缩放比例进行调整:
    x_center = x_center_original * scale
    y_center = y_center_original * scale
    width = width_original * scale
    height = height_original * scale
    

3. YOLO预处理代码示例

以下是YOLO预处理的核心逻辑(伪代码):

def preprocess_image(image, target_size=416):# 获取原始图片尺寸original_h, original_w = image.shape[:2]# 计算缩放比例scale = min(target_size / original_w, target_size / original_h)new_w = int(original_w * scale)new_h = int(original_h * scale)# 缩放图片resized_image = cv2.resize(image, (new_w, new_h))# 填充图片delta_w = target_size - new_wdelta_h = target_size - new_htop, bottom = delta_h // 2, delta_h - (delta_h // 2)left, right = delta_w // 2, delta_w - (delta_w // 2)padded_image = cv2.copyMakeBorder(resized_image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(0, 0, 0))return padded_image, scale# 示例
image = cv2.imread("example.jpg")
processed_image, scale = preprocess_image(image)

4. 训练时的数据增强

除了调整图片大小,YOLO在训练时还会进行数据增强(Data Augmentation),包括:

  • 随机裁剪(Random Crop)
  • 随机旋转(Random Rotation)
  • 颜色抖动(Color Jittering)
  • 随机翻转(Random Flip)

这些增强操作会在调整图片大小之后进行,以提高模型的泛化能力。


5. 总结

  • YOLO在训练时会自动调整输入图片的大小,使其适应模型的固定输入尺寸。
  • 调整过程包括缩放、填充和归一化。
  • 边界框的坐标也会根据缩放比例进行调整。
  • 数据增强操作会在调整大小之后进行。

输入尺寸和图片大小有啥关系?

模型的输入尺寸原始图片的尺寸是相关的,但它们的关系需要通过预处理来协调。


1. 模型的输入尺寸

  • 模型的输入尺寸是固定的,通常是一个正方形(如416×416、608×608等)。这是YOLO网络结构的要求,因为YOLO将输入图像划分为S×S的网格,每个网格负责预测目标。
  • 这个尺寸是在配置文件中定义的(如yolov3.cfg中的widthheight参数)。

2. 原始图片的尺寸

  • 原始图片的尺寸可以是任意的,通常不是正方形(如1920×1080、1280×720等)。
  • 原始图片的尺寸会影响目标的分布和细节。例如,较大的图片可能包含更多细节,较小的图片可能丢失一些细节。

3. 图片尺寸与模型输入尺寸的关系

在YOLO的训练和推理过程中,原始图片会被预处理以适应模型的输入尺寸。具体步骤如下:

3.1 缩放(Resize)
  • 原始图片会被缩放到模型的输入尺寸(如416×416)。
  • 如果原始图片不是正方形,通常会进行**填充(Padding)**以保持宽高比。例如,将1920×1080的图片缩放到416×416时,会在高度方向填充空白区域,使其变为416×416。
3.2 归一化(Normalization)
  • 缩放后的图片会被归一化到0~1的范围,以便输入到神经网络中。
3.3 边界框调整
  • 在训练过程中,原始图片的边界框(Bounding Box)也会根据缩放比例进行调整,以适应新的输入尺寸。

4. 为什么需要固定输入尺寸?

  • 网络结构要求:YOLO的网络结构是基于固定输入尺寸设计的,输入尺寸的变化会导致网络参数不匹配。
  • 计算效率:固定输入尺寸可以提高计算效率,因为卷积操作在固定尺寸下更容易优化。
  • 硬件限制:固定输入尺寸可以更好地利用GPU的并行计算能力。

5. 输入尺寸对检测结果的影响

  • 大尺寸输入:可以保留更多细节,适合检测小目标,但计算量较大,速度较慢。
  • 小尺寸输入:计算速度快,但可能丢失细节,适合检测大目标或实时性要求高的场景。

6. 如何处理不同尺寸的图片?

在实际应用中,输入图片的尺寸可能各不相同。YOLO通过以下方式处理:

  1. 缩放和填充:将图片缩放到模型输入尺寸,同时保持宽高比。
  2. 边界框调整:在推理完成后,将检测结果(边界框)映射回原始图片的尺寸。

7. 总结

  • 模型的输入尺寸是固定的,而原始图片的尺寸可以是任意的。
  • 通过缩放和填充,原始图片会被调整为模型的输入尺寸。
  • 在推理完成后,检测结果需要映射回原始图片的尺寸。

因此,模型的输入尺寸和图片的尺寸是相关的,但通过预处理可以解决它们之间的不匹配问题,而这个预处理过程是yolo自己完成的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/74257.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【TI MSPM0】Timer学习

一、计数器 加法计数器:每进入一个脉冲,就加一减法计算器:每进入一个脉冲,就减一 当计数器减到0,触发中断 1.最短计时时间 当时钟周期为1khz时,最短计时时间为1ms,最长计时时间为65535ms 当时…

从WebRTC到嵌入式:EasyRTC如何借助大模型提升音视频通信体验

随着人工智能技术的快速发展,WebRTC与大模型的结合正在为音视频通信领域带来革命性的变革。WebRTC作为一种开源实时通信技术,以其低延迟、跨平台兼容性和强大的音视频处理能力,成为智能硬件和物联网设备的重要技术支撑。 而EasyRTC作为基于W…

使用brower use AI 代理自动控制浏览器完成任务

第一步:终端运行命令下载 brower use pip install browser-use 第二步: 终端运行命令下载playwright playwright install 第三步:新建test.py代码,粘贴复制以下代码 import asyncio import osfrom dotenv import load_doten…

自由学习记录(45)

顶点片元着色器(important) 1.需要在Pass渲染通道中编写着色器逻辑 2.可以使用cG或HLSL两种shader语言去编写Shader逻辑 3.代码量较多,灵活性较强,性能消耗更可控,可以实现更多渲染细节 4.适用于光照处理较少&#xf…

Quartus + VScode 实现模块化流水灯

文章目录 一、通过VScode编写Verilog代码二、模块化编程三、代码示例 一、通过VScode编写Verilog代码 1、下载Vscode 2、下载相关插件 搜索Verilog就会弹出有如图所示的插件,下载并安装 3、创建Quartus项目 4、创建完成后点击Tools,选择Options 然后在…

tryhackme——The Lay of the Land

文章目录 一、网络基础设施1.1 内网1.2 DMZ区1.3 网络枚举(Network Enumeration) 二、域环境三、用户和组管理四、安全解决方案4.1 基于主机的安全解决方案4.1.1 防病毒软件4.1.2 Microsoft Windows Defender4.1.3 主机防火墙4.1.4 安全事件记录与监控4.…

STM32---FreeRTOS消息队列

一、简介 1、队列简介: 队列:是任务到任务,任务到中断、中断到任务数据交流的一种机制(消息传递)。 FreeRTOS基于队列,实现了多种功能,其中包括队列集、互斥信号量、计数型信号量、二值信号量…

2025年了,5G还有三个新变化

最近舆论开始讨论5G为什么不火了?5G是不是停滞发展了。 实际上,5G不仅在发展,还迎来了它的升级版5G-A。 在今年西班牙举行的世界移动通信大会上,5G-A就是焦点之一。 被誉为全球通信领域风向标的MWC,汇聚了华为、中兴通…

SQLMesh SCD-2 时间维度实战:餐饮菜单价格演化追踪

场景背景:动态菜单价格管理 考虑某连锁餐厅的菜单管理系统,需要记录食品价格的历史变更轨迹。业务需求包括: 记录每次价格调整的时间点支持历史价格查询(如"2020年1月2日汉堡多少钱")维护当前有效价格清单…

失物招领|校园失物招领系统|基于Springboot的校园失物招领系统设计与实现(源码+数据库+文档)

校园失物招领系统目录 目录 基于Springboot的校园失物招领系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、 管理员功能实现 (1) 失物招领管理 (2) 寻物启事管理 (3) 公告管理 (4) 公告类型管理 2、用户功能实现 (1) 失物招领 (2) 寻物启事 (3) 公告 …

基于BClinux8部署Ceph 19.2(squid)集群

#作者&#xff1a;闫乾苓 文章目录 1.版本选择Ceph版本发布历史目前官方在维护的版本 2.部署方法3.服务器规划4.前置配置4.1系统更新4.2配置hosts cat >> /etc/hosts << EOFssh-keygenssh-copy-id ceph01ssh-copy-id ceph02ssh-copy-id ceph034.5 Python34.6 Syst…

安装React开发者工具

我们在说组件之前&#xff0c;需要先安装一下React官方推出的开发者工具&#xff0c;首先我们分享在线安装方式 首先打开谷歌网上应用商店(针对谷歌浏览器)&#xff0c;在输入框内搜索react&#xff0c;安装如下插件&#xff1a; 注意安装提供方为Facebook的插件&#xff0c;这…

linux中如何修改文件的权限和拥有者所属组

目录标题 chmod指令八进制形式权限修改文件拥有者所属组的修改umask有关内容 chmod指令 chmod指令可以用来修改人员的权限其形式如下&#xff1a; u代表的是拥有者&#xff0c;g代表的是所属组&#xff0c;o代表的是其他人&#xff0c;a表示所有人&#xff0c;如果你想增加权…

三主热备架构

1.要求 角色主机名软件IP地址用户client192.168.72.90keepalivedvip192.168.72.100masterserverAkeepalived, nginx192.168.72.30backupserverBkeepalived, nginx192.168.72.31backupserverCkeepalived, nginx192.168.72.32webtomcat1tomcat192.168.72.41webtomcat2tomcat192.1…

windows 10 系统配置Node

目录 什么是Node.js 什么是Npm Node.js环境搭建 下载 解压 配置环境变量 npm配置 如何运行下载的Node.js项目 什么是Node.js 在 Node.js 之前&#xff0c;JavaScript 只能运行在浏览器中&#xff0c;作为网页脚本使用&#xff0c;为网页添加一些特效&#xff0c;或者和…

Windows Server 2025 使用 IIS 搭建 ASP.NET 3.5 网站

开启远程桌面 参考文章Windows server开启远程桌面教程打开服务管理器。ECS 配置安全组&#xff0c;开启 3389Telnet 验证网络联通性 telnet x.x.x.x 338安装 Windows App&#xff0c;登录验证 安装 ASP.NET 3.5 1.参考文章Windows Server 2012安装 .NET Framework 3.5和 Wi…

开源模型应用落地-shieldgemma-2-4b-it模型小试-多模态内容安全检测(一)

一、前言 在人工智能迅速发展的过程中,内容安全成为AI应用中的一个重要挑战。谷歌团队于2025年3月推出了一款名为ShieldGemma-2-4B-IT的模型,它以创新的多模态安全检测能力,为行业树立了新的开源责任AI标准。 与早期的仅支持文本审核的版本相比,ShieldGemma-2-4B-IT在谷歌的…

【数据预测】基于遗传算法GA的LSTM光伏功率预测 GA-LSTM光伏功率预测【Matlab代码#91】

文章目录 【可更换其他算法&#xff0c;获取资源请见文章第6节&#xff1a;资源获取】1. 遗传算法GA2. 长短期记忆网络LSTM3. 基于GA-LSTM的光伏功率预测4. 部分代码展示5. 运行结果展示6. 资源获取 【可更换其他算法&#xff0c;获取资源请见文章第6节&#xff1a;资源获取】 …

openEuler24.03 LTS下安装Hadoop3完全分布式

目录 Linux准备 openEuler24.03 LTS简介 下载openEuler24.03 LTS 安装openEuler24.03 LTS Linux基本设置 关闭及禁用防火墙 修改主机名 静态ip 映射主机名 创建普通用户 目录准备 克隆主机 配置机器之间免密登录 编写分发脚本 安装Java 下载Java 解压 设置环…

【Linux之Shell脚本实战】Linux服务器输出美观漂亮的html巡检报告

【Linux之Shell脚本实战】Linux服务器输出美观漂亮的html巡检报告 一、Shell脚本介绍1.1 Shell脚本简介1.2 Shell脚本特点二、脚本要求三、检查本地环境3.1 本地环境规划3.2 检查本地系统3.3 检查系统内核版本四、编辑脚本五、执行及测试脚本5.1设置定时任务5.2 执行效果六、总…