电路原理(电容 集成电路NE555)

电容

1.特性:充放电,隔直流,通交流
2.电容是通过聚集正负电荷来存储电能的
3.电容充放电过程可等效为导通回路
4.多电容并联可以把容量叠加,但是多电容串联就不会,只会叠加电容的耐压值。
6.电容充放电时相当于通路,充放电结束时相当于断路
在这里插入图片描述

集成电路

简称芯片或IC,就是把很复杂的电路集成到一个硅片上,把他插到面包板上,只加led和电池,就可以让一个复杂电路工作。
在这里插入图片描述
一些入门的芯片:
在这里插入图片描述
所有芯片都要有正负极的连接,不同芯片要求的输入电压不同,具体看手册。学看手册:
在这里插入图片描述
然后就是信号输入,主要是连接麦克风,光敏电阻之类的能产生信号的电路。
还有信号输出,主要连接LED,蜂鸣器,喇叭等用于输出效果的电路。
最后是设置电路,主要是外接电容,电阻这种方式来设置内部电路的相应功能和参数。例如LM386:
在这里插入图片描述

NE555

时基芯片,是能产生时间基准的芯片,有定时器和延时开关。也可以实现其他用途。所有用途也只属于三种类型:双稳态,单稳态,无稳态。
双稳态:电路可以稳定保持在两种状态,比如家里的电灯开关
单稳态:只能稳定在一种状态,比如门铃
无稳态:没有保持在稳定状态,一致在跳变

把该芯片电路划分成独立电路:
在这里插入图片描述
比较器电路:用于电压比较 。详细学习可以看比较器的原理,线下先简化成下图:
在这里插入图片描述
去掉电源正负极(只是简便化,并不是把电源真去掉了):
在这里插入图片描述

比较器

比较输入端的电压大小,在输出端输出电压值比较效果。

举例

在这里插入图片描述
输入端:+号输入3v电压,-号输入2v电压,3>2,所以输出端输出高电平,高电平就是电源电压,假如输入电源就是6v,那么输出的电压就是6v:
在这里插入图片描述
同理,下面这种情况输出低电压:
在这里插入图片描述
如果两个﹢号的电压相等,那么输出端就保持不变。但这只是理论上的,实际应用很难完全相等,应该尽量避免输入电压完全相等

双稳态触发器

输入和输出的关系
在这里插入图片描述

输出电路

在这里插入图片描述

他的输出端和Q端输出的是相同的,他的作用是提高电流的输出能力(因为有多个三极管的放大作用)

放电电路

在这里插入图片描述
实现过程:
在这里插入图片描述
他的b连接反Q的输出端,反Q输出高电平时,ce导通

复位电路

在这里插入图片描述

分压电阻

在这里插入图片描述
因为电阻串联分压的特性,所以三等分后:
在这里插入图片描述

最终简化版:

在这里插入图片描述
刚通电时,双稳态触发器没有触发,处于关状态,S和R都输入低电平,Q输出低,反Q输出高,3脚输出低电平,放电电路的三极管导通,7脚和负极导通,相当于也输出低电平。
之后让触发器触发,反Q变成低电平,3脚输出高电平,7脚不再输出高电平,三极管截止,又因为7脚没有上拉电阻,7脚处于无电压的悬空状态(开漏状态)。
如何让触发器进入触发状态?
比较器2输出高电平,也就是2脚电压要小于2才可以,所以2脚连接负极(0v电压)。这样就可以触发了,3脚输出高电平,7脚处于悬空状态,因为是双稳态触发电路,即使2脚的0v电压断开,S重新变低电平,当前稳态也不变,3脚依然高电平
如何清除触发状态?
R端高电平,也就是6脚电压大于4,所以6脚接电源正极。
这里的三分之二电压引出了一条线,接在5脚,这个就是电压控制引脚,用来设置两段分压值的,通过外接输入电压改变两个电阻段的值:
在这里插入图片描述
所以就可以通过5脚来改变他下方两个电阻的分压值,当电路中不需要调节电压时,可以连接一个0.01uF的电容:
在这里插入图片描述
也可以悬空,不连接
在这里插入图片描述
以上就方便了芯片的引脚理解:
在这里插入图片描述

2和6是比较器的输入端,当2的电压小于vcc的三分之一,3脚输出高电平,只要输入一次就可以,即使2高于vcc三分之一电压,3脚输出也不变;只有在6输入了大于vcc三分之二电压时,3才变成低电平,这样的话6也会失效,只有2再次输入于vcc的三分之一时,3才变回高。

双稳态电路(双按键控制开关)

理解了上面,就可以搭配出双稳态电路,通过两个按键来点亮个熄灭LED
在这里插入图片描述

在这里插入图片描述
操作:
在这里插入图片描述
按键连接2脚和电源负极,按下按键,2脚输入0v电压,触发触发器,3脚输出高电平,点亮LED,因为能输出200mA电流,所以串联一个100电阻。
在这里插入图片描述

关灯按键,按下之后,6输入电源电压6v,触发状态清除,3脚低电平,LED灭。
如果两个按键都没按下,2和6都是悬空状态,电平不稳定,很容易被干扰,用手指触摸2脚都可能电量LED。
所以在2脚添加10K上拉电阻。在开灯键没按下时,2脚电压被10K电阻输入到6v电压。同理,6脚添加一个10K下拉电阻,没按键时,6脚被10K电阻输入0v电压,所以就稳定了 (就是给一个默认状态,避免因为悬空而产生的不确定状态)
在这里插入图片描述

单稳态电路(一个按键,开灯后延时熄灭)

在这里插入图片描述
通电时,3为低电平,7和负极导通,这时相当于电容两个引脚短接,会放电,7和6连接,6也是0v.
按键后3变高,led亮,7不再和负极导通,电容充电,充电过程中,6的电压会缓慢升高,升高到4v以上,大于三分之二电压,6就触发,3变回低电平,LED灭,7又和负极导通,电容放电。起到延时关灯效果。
延时时间由电阻R1和电容C1决定。延时时间T = R1 × C1

无稳态电路(不按键,亮灭各交替一段时间)

把2和6连一起,变成一个综合引脚,称他为2+6脚,加一个47K电阻,目的是当7和电源负极导通时,电容的电不会马上放光,而是通过47K电阻缓慢放电。然后正极和7加一个10K电阻,当7悬空时,让电源正极通过10K和47K电阻,给电容缓慢充电。
在这里插入图片描述

上电后,3为低电平,7和负极导通,此时电容中的电量通过47K电阻缓慢放电,电容正极的电压不断下降,降到小于三分之一电源电压时,2触发,3变高电平,LED亮,此时7和负极断开,悬空,电容不再放电,通过10K和47K电阻给电容缓慢充电,当电容正极电压升到大于三分之二电压时(4v)6触发,3输出低电平,LED灭,7再次导通,给电容放电。所以交替进行,如下两个图:
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/73293.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入解析 React 最新特性:革新、应用与最佳实践

深入解析 React 最新特性:革新、应用与最佳实践 1. 引言 React 作为前端开发的核心技术之一,近年来不断推出 新的 API 和优化机制,从 Concurrent Rendering(并发模式) 到 Server Components(服务器组件&a…

【氮化镓】高输入功率应力诱导的GaN 在下的退化LNA退化

2019年,中国工程物理研究院电子工程研究所的Tong等人基于实验与第一性原理计算方法,研究了Ka波段GaN低噪声放大器(LNA)在高输入功率应力下的退化机制。实验结果表明,在27 GHz下施加1 W连续波(CW)输入功率应力后,LNA的增益下降约1 dB,噪声系数(NF)增加约0.7 dB。进一…

C#程序员接口调用工具与方法

作为专注于接口调用的C#软件工程师,以下工具和方法能显著提升开发效率与代码质量: 一、接口开发与测试自动化工具 1. API测试与Mock工具 Postman Newman 支持RESTful/GraphQL接口调试与自动化测试,通过集合(Collection&#xf…

Spring Boot项目中集成sa-token实现认证授权和OAuth 2.0第三方登录

OAuth 2.0第三方登录 OAuth 2.0 是一种授权协议,允许第三方应用在不暴露用户密码的情况下访问用户的资源。它通常用于第三方登录场景,例如使用GitHub、Google等社交平台进行登录。 在sa-token框架中,OAuth 2.0第三方登录可以通过集成sa-tok…

数字化新零售与 AI 大模型,如何重塑大健康赛道?​

在数字化浪潮中,大健康赛道正经历深刻变革。数字化新零售营销模式的兴起,与 AI 大模型的强大能力相结合,为大健康领域带来了全新的发展机遇。 数字化新零售营销模式融合线上线下,运用大数据、云计算分析消费者行为,实…

高速PCB设计(布线设计)

以下是针对高速PCB布线设计的综合笔记,结合用户提供的设计规范及行业通用原则整理而成: 一、关键信号布线原则 布线优先级 顺序:射频信号>中/低频信号>时钟信号>高速信号射频信号需包地处理,线…

宇树ROS1开源模型在ROS2中Gazebo中仿真

以GO1为例 1. CMakelists.txt更新语法 cmake_minimum_required(VERSION 3.8) project(go1_description) if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")add_compile_options(-Wall -Wextra -Wpedantic) endif() # find dependencies find…

嵌入式学习第二十四天--网络 服务器

服务器模型 tcp服务器: socket bind listen accept recv/send close 1.支持多客户端访问 //单循环服务器 socket bind listen while(1) { accept while(1) { recv/send } } close 2.支持多客户端同时访问 (并发能力) 并发服务器 socket bind …

使用GPTQ量化Llama-3-8B大模型

使用GPTQ量化8B生成式语言模型 服务器配置:4*3090 描述:使用四张3090,分别进行单卡量化,多卡量化。并使用SGLang部署量化后的模型,使用GPTQ量化 原来的模型精度为FP16,量化为4bit 首先下载gptqmodel量化…

防汛应急包,快速响应,守护安全

根据中国水利部统计,自1949年以来,我国几乎每年都面临洪水威胁,其中20世纪90年代后洪涝灾害频率显著增加,仅1990-2009年间就发生超4000起较大灾害,直接经济损失近3万亿元,受灾人口达20亿人次。在2020年长江…

从 Vue 到 React:理解作用与副作用

作用 VS 副作用 响应式作用: 响应式作用是 Vue 响应式系统的一部分,它指的是跟踪函数的依赖关系,并在它们的值发生变化时重新运行该函数的过程。watchEffect 是最直接的创建作用的方式(如 watch 和 computed)。 副作…

a = b c 的含义

简单一句话: result condition && value; condition 为真取 value的值,condition为假就取condition的值,真取后假取前 // 示例 1: b 为真值 let b 1; let c 2; let a b && c; console.log(a); // 输出: 2// 示例 2: b 为…

【大模型系列】llama.cpp本地运行大模型

上一篇链接: 【大模型系列】使用ollama本地运行千问2.5模型 我们讲了ollama本地运行大模型,这里我们介绍另一种本地运行大模型的方法:llamacpp 软件下载 下载地址:https://github.com/ggml-org/llama.cpp/releases 下载cpu版本的llamacpp&a…

PyQt基础——简单的图形化界面(窗口)

一、代码展示 import sysfrom PyQt6.QtGui import QPixmap from PyQt6.QtWidgets import QWidget, QApplication, QLabel, QLineEdit, QPushButton from PyQt6 import uic from PyQt6.QtCore import Qt# 封装一个我的窗口类 class MyWidget(QWidget):def __init__(self):supe…

泰山派开发之—Ubuntu24.04下Linux开发环境搭建

简介 最近翻到了吃灰已久的泰山派,是刚出来的时候用优惠券买的,当时价格挺便宜的,最近给它翻出来了,打算试试做个项目。买的泰山派容量是2G16G,SOC芯片使用的是RK3566,搭载1TOP算力的NPU,并且具…

HTTP 协议中常见的错误状态码(详细介绍)

以下是 HTTP 协议中常见的错误状态码及其原因的总结,按错误类型分类整理: 4xx 客户端错误 400 Bad Request 原因:请求格式错误,服务器无法解析。常见场景: 请求头或请求体语法错误(如 JSON/XML 格式错误…

kkFileView文件预览组件部署说明

kkFileView组件部署流程指南 在数字化办公与文件管理场景中,在线文件预览功能极为关键。kkFileView作为一款优秀的开源在线文件预览组件,支持多种格式文件的预览,为企业和开发者提供了便捷的解决方案。下面将详细介绍其部署步骤。 一、前期准…

[React Native]Stack、Tab和Drawer导航器详解

对于StackNavigator,网页[1]提到它用于页面间的层级跳转,使用栈结构管理页面。网页[4]和[8]详细说明了navigationOptions的配置,比如标题、头部样式等。网页[3]展示了如何在Stack中嵌入Tab导航,这可以作为组合使用的例子。 TabNa…

激光雷达产业观察--速腾聚创发展脉络2025.3.14

一.发展历程 1.1 企业创立 速腾聚创的创立可追溯至2014年8月28日,这家充满活力的高科技企业诞生于中国深圳。公司创始人邱纯鑫是一位富有远见的企业家,他的创业之路充满了创新精神和技术洞察力。 邱纯鑫的创业灵感源于他在哈尔滨工业大学深圳校区的学…

Kubernetes 网络方案全解析:Flannel、Calico 与 Cilium 对比与选择

文章目录 Kubernetes 网络方案全解析:Flannel、Calico 与 Cilium 对比与选择Flannel —— 轻量级基础网络简介核心特性适用场景 Calico —— 高性能与安全兼备的成熟方案简介核心特性适用场景 Cilium —— 基于 eBPF 的下一代网络方案简介核心特性适用场景 深入对比…