Redis 内存淘汰策略深度解析

Redis 作为高性能的内存数据库,其内存资源的高效管理直接关系到系统的稳定性和性能。当 Redis 的内存使用达到配置的最大值(maxmemory)时,新的写入操作将触发内存淘汰机制(Eviction Policy),以释放空间存储新数据。本文将深入探讨 Redis 的内存淘汰策略、实现原理、适用场景及最佳实践。

一、 内存淘汰策略概述

Redis 的内存淘汰策略决定了在内存不足时,如何选择需要删除的键来释放空间。这些策略可以分为两大类:

  • ​基于过期时间的淘汰​(volatile-*):仅针对设置了过期时间的键。
  • 全局淘汰​(allkeys-*):针对所有键,无论是否设置过期时间。

Redis 支持以下 8 种内存淘汰策略

noeviction:默认策略,禁止写入新数据,直接返回错误。
volatile-lru:淘汰最近最少使用(LRU)的设置了过期时间的键。
volatile-lfu:淘汰最不经常使用(LFU)的设置了过期时间的键。
volatile-random:随机淘汰设置了过期时间的键。
volatile-ttl:优先淘汰剩余生存时间(TTL)最短的键。
allkeys-lru:淘汰所有键中最近最少使用的键。
allkeys-lfu:淘汰所有键中最不经常使用的键。
allkeys-random:随机淘汰任意键。

二、内存淘汰策略详解

2.1 ​noeviction(不淘汰)​

​行为:当内存不足时,拒绝所有写入命令(如 SET、LPUSH),但允许读取操作。
​适用场景:适用于数据不可丢失的场景(如持久化存储),需确保内存足够或配合持久化机制。
缺点:若内存不足且无持久化,可能导致服务不可用。

2.2 ​LRU(Least Recently Used)​

​原理:淘汰最近最久未被访问的键。
​Redis 实现:Redis 使用近似 LRU 算法,通过随机采样(默认取 5 个键)选择最久未使用的键,而非遍历所有键,以减少计算开销。
​适用场景:适用于缓存场景,优先保留热点数据。
​命令示例

CONFIG SET maxmemory-policy volatile-lru  # 针对带过期时间的键
CONFIG SET maxmemory-policy allkeys-lru   # 针对所有键

2.3 ​LFU(Least Frequently Used)​

​原理:淘汰访问频率最低的键(Redis 4.0 引入)。
​Redis 实现:通过计数器统计键的访问频率,并随时间衰减历史计数,避免长期累积导致无法淘汰旧键。
​适用场景:适合长期缓存,如高频访问的静态数据。
​命令示例

CONFIG SET maxmemory-policy volatile-lfu  # 针对带过期时间的键
CONFIG SET maxmemory-policy allkeys-lfu   # 针对所有键

2.4 ​TTL(Time To Live)​

​原理:优先淘汰剩余生存时间(TTL)最短的键。
​适用场景:适用于明确知道键生命周期的场景(如临时会话数据)。
限制:仅对设置了过期时间的键生效。
​命令示例

CONFIG SET maxmemory-policy volatile-ttl

2.5 ​Random(随机淘汰)​

​原理:随机选择键进行淘汰。
​适用场景:内存压力大且数据重要性均等时,快速释放内存。
​命令示例

CONFIG SET maxmemory-policy volatile-random  # 针对带过期时间的键
CONFIG SET maxmemory-policy allkeys-random   # 针对所有键

三、 内存淘汰的底层实现

3.1 ​LRU/LFU 的近似算法

  • Redis 通过evictionPoolEntry​结构维护候选淘汰键池。每次淘汰时,随机采样一组键,更新其访问时间或频率信息,选择最不活跃的键删除。
  • ​LRU 时钟:Redis 使用全局 24 位时钟(精度为秒)记录键的最近访问时间。内存中每个对象存储与全局时钟的差值(lru字段),而非精确时间戳。
  • LFU 计数器:每个键的 lru 字段被拆分为两部分:
    • 高 16 位:最近访问时间的分钟级精度。
    • 低 8 位:访问频率计数器(0~255),通过概率递增,随时间衰减。

3.2 ​淘汰流程

  1. 客户端执行写入命令触发内存检查。
  2. Redis 检查 maxmemory 是否已超出。
  3. 根据配置的策略选择待淘汰键。
  4. 删除键并触发相关事件(如 evicted 通知)。

四、 如何选择合适的内存淘汰策略?

4.1 ​缓存场景

​推荐策略:allkeys-lru 或 allkeys-lfu
​理由:优先保留热点数据,最大化缓存命中率。

4.2 ​持久化存储

​推荐策略:noeviction(需确保内存足够或启用持久化)。
​替代方案:若允许部分数据丢失,可使用 volatile-lru 结合过期时间。

4.3 ​临时数据场景

​推荐策略:volatile-ttl
​理由:自动清理生命周期明确的数据(如验证码、会话信息)。

4.4 ​混合型数据

​推荐策略:allkeys-lru + 部分键设置过期时间。
​示例:电商系统中,商品详情用 allkeys-lru 缓存,购物车数据设置 TTL。

五、最佳实践与注意事项

5.1 ​配置建议

​设置合理的 maxmemory:通常为物理内存的 80%~90%,避免 OOM。
​监控内存使用:

INFO memory  # 查看内存指标(used_memory、maxmemory)
INFO stats    # 查看 evicted_keys(淘汰键数量)

5.2 ​避免大规模淘汰

​分片设计:通过集群分散数据,减少单个节点的内存压力。
​预热缓存:重启后预加载高频数据,避免冷启动时集中淘汰。

5.3 ​常见误区

volatile-ttl 不依赖惰性删除:该策略仅在内存不足时触发,仍需依赖定期/惰性删除清理过期键。
​LFU 计数器并非精确值:访问频率通过概率递增,适用于相对比较而非绝对计数。

六、总结

Redis 的内存淘汰策略是平衡内存使用与性能的关键机制。理解不同策略的原理和适用场景,结合业务需求合理配置,可显著提升系统的稳定性和效率。在高并发场景下,建议通过监控工具(如 RedisInsight、Prometheus)实时跟踪内存和淘汰指标,动态调整策略和资源配置。

通过本文的深度解析,希望您能掌握 Redis 内存淘汰的核心机制,并在实践中灵活运用,构建高效可靠的 Redis 服务。

参考资料

Redis 官方文档:https://redis.io/docs/reference/eviction/
《Redis 设计与实现》——黄健宏
Redis 源码解析(evict.c、object.c)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/72953.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【面试】Java 集合

集合 1、常见的集合有哪些2、说说 List、Set、Queue、Map 四者的区别3、Collection 和 Collections 有什么区别4、Comparable 和 Comparator 的区别5、ArrayList 和 LinkedList 的区别是什么6、ArrayList 和 Vector 的区别是什么7、ArrayList 和 Vector 的扩容机制8、CopyOnWri…

【c++】平移字符串

说明 实现字符串的左移与右移 示例代码 #include <iostream> #include <string> using namespace std;int main() {string str1 "12345";//左移2位string str2 str1.substr(2) str1.substr(0, 2);cout << str2 << endl;//右移2位&…

密码学(终极版)

加密 & 解密 备注&#xff1a;密码学领域不存在完全不能破解的密码&#xff0c;但是如果一个密码需要很久很久&#xff0c;例如一万年才能破解&#xff0c;就认为这个密码是安全的了。 对称加密 非对称加密 公钥加密、私钥解密 私钥签名、公钥认证 非对称的底层原理是…

FreeRTOS任务状态查询

一.任务相关API vTaskList&#xff08;&#xff09;&#xff0c;创建一个表格描述每个任务的详细信息 char biaoge[1000]; //定义一个缓存 vTaskList(biaoge); //将表格存到这缓存中 printf("%s /r/n",biaoge); 1.uxTaskPriorityGet&#xff08;&#xf…

yolov5代码详解--3.python代码脚本

三、val.py val.py的主要作用是对训练好的模型进行验证&#xff08;或评估&#xff09;。具体来说&#xff0c;它用于在指定的验证集上评估模型的性能&#xff0c;计算各项评估指标&#xff0c;并输出结果。val.py通常在模型训练完成后运行&#xff0c;用于验证模型的检测精度、…

无人机应用探索:玻纤增强复合材料的疲劳性能研究

随着无人机技术的快速发展&#xff0c;轻量化已成为其结构设计的核心需求。玻纤增强复合材料凭借高强度、低密度和优异的耐环境性能&#xff0c;成为无人机机身、旋翼支架等关键部件的理想选择。然而&#xff0c;无人机在服役过程中需应对复杂多变的环境&#xff1a;高空飞行时…

Python SQLite3 保姆级教程:从零开始学数据库操作

Python SQLite3 保姆级教程&#xff1a;从零开始学数据库操作 本文适合纯新手&#xff01;无需任何数据库基础&#xff0c;跟着步骤操作即可掌握 SQLite3 的核心用法。 目标&#xff1a;让你像用记事本一样轻松操作数据库&#xff01; 目录 什么是 SQLite3&#xff1f;环境准…

C语言中的整数类型(short,int,long和long long)

整数是编程中最常见的一种数据类型&#xff0c;C语言提供了多种整数类型&#xff0c;包括 short、int、long 和 long long&#xff0c;它们的主要区别在于存储范围和内存占用的大小。 本节将详细讲解这些整数类型的定义、特性、使用场景以及注意事项&#xff0c;帮助你全面理解…

使用jcodec库,访问网络视频提取封面图片上传至oss

注释部分为FFmpeg&#xff08;确实方便但依赖太大&#xff0c;不想用&#xff09; package com.zuodou.upload;import com.aliyun.oss.OSS; import com.aliyun.oss.model.ObjectMetadata; import com.aliyun.oss.model.PutObjectRequest; import com.zuodou.oss.OssProperties;…

游戏引擎学习第147天

仓库:https://gitee.com/mrxiao_com/2d_game_3 上一集回顾 具体来说&#xff0c;我们通过隐式计算来解决问题&#xff0c;而不是像数字微分分析器那样逐步增加数据。我们已经涵盖了这个部分&#xff0c;并计划继续处理音量问题。不过&#xff0c;实际上我们现在不需要继续处理…

使用Dockerfile打包java项目生成镜像部署到Linux_java项目打docker镜像的dockerfile

比起容器、镜像来说&#xff0c;Dockerfile 非常普通&#xff0c;它就是一个纯文本&#xff0c;里面记录了一系列的构建指令&#xff0c;比如选择基础镜像、拷贝文件、运行脚本等等&#xff0c;每个指令都会生成一个 Layer&#xff0c;而 Docker 顺序执行这个文件里的所有步骤&…

Linux -- 磁盘结构、文件系统ext2

一、磁盘 1.磁盘的物理结构 2.磁盘的存储结构 盘片&#xff1a;是机械硬盘存储数据的主要介质&#xff0c;一般由铝合金或玻璃等材料制成&#xff0c;表面涂有一层磁性材料。数据通过磁头在盘片的磁性涂层上进行磁化来记录&#xff0c;磁化的不同方向代表二进制的 0 和 1。盘面…

标量、向量、矩阵与张量:从维度理解数据结构的层次

在数学和计算机科学中,维度描述了数据结构的复杂性,而标量、向量、矩阵、张量则是不同维度的数据表示形式。它们的关系可以理解为从简单到复杂的扩展,以下是详细解析: 1. 标量(Scalar):0维数据 定义:单个数值,没有方向,只有大小。 维度:0维(无索引)。 示例: 温度…

点云数据处理--splat转3dtiles

文章目录 处理流程简介核心功能实现数据读取与格式转换定义Point类数据读取splat转gltf 点云数据分割定义四叉树递归生成3dtiles瓦片 生成tileset.json递归生成tileset.json计算box 主函数调用渲染 下一步工作性能优化渲染效果调优其他 源码地址&#xff1a; github 处理流程简…

OneM2M:全球性的物联网标准-可应用于物联网中

OneM2M 是一个全球性的物联网(IoT)标准,旨在为物联网设备和服务提供统一的框架和接口,以实现设备之间的互操作性、数据共享和服务集成。OneM2M 由多个国际标准化组织(如 ETSI、TIA、TTC、ARIB 等)共同制定,目标是解决物联网领域的碎片化问题,提供一个通用的标准,支持跨…

【Python 入门基础】—— 人工智能“超级引擎”,AI界的“瑞士军刀”,

欢迎来到ZyyOvO的博客✨&#xff0c;一个关于探索技术的角落&#xff0c;记录学习的点滴&#x1f4d6;&#xff0c;分享实用的技巧&#x1f6e0;️&#xff0c;偶尔还有一些奇思妙想&#x1f4a1; 本文由ZyyOvO原创✍️&#xff0c;感谢支持❤️&#xff01;请尊重原创&#x1…

Java爬虫获取淘宝商品详情数据的完整指南

在电商领域&#xff0c;获取商品详情数据对于市场分析、价格监控、用户体验优化等场景具有重要意义。淘宝作为国内领先的电商平台&#xff0c;提供了丰富的API接口供开发者使用&#xff0c;其中item_get和item_get_pro接口可以用来获取商品的详细信息。本文将详细介绍如何使用J…

Ubuntu 下 nginx-1.24.0 源码分析 - ngx_init_cycle 函数

nei声明在 src/core/ngx_cycle.h ngx_cycle_t *ngx_init_cycle(ngx_cycle_t *old_cycle);实现在 src/core/ngx_cycle.c ngx_cycle_t * ngx_init_cycle(ngx_cycle_t *old_cycle) {void *rv;char **senv;ngx_uint_t i, n;ngx_log_t …

qt 操作多个sqlite文件

qt 操作多个sqlite文件 Chapter1 qt 操作多个sqlite文件1. 引入必要的头文件2. 创建并连接多个SQLite数据库3. 代码说明4. 注意事项 Chapter2 qt 多线程操作sqlite多文件1. 引入必要的头文件2. 创建数据库操作的工作线程类3. 在主线程中创建并启动多个工作线程4. 代码说明5. 运…

最新版本WebContext构造函数-避坑

import org.thymeleaf.context.IWebContext; import org.thymeleaf.context.WebContext; 当你想把页面信息全部获取出来存到redis缓存中使用时&#xff0c;SpringWebContext在Spring5中报错 SpringWebContext ctx new SpringWebContext(request, response,request.getServlet…