基于RapidOCR与DeepSeek的智能表格转换技术实践


基于RapidOCR与DeepSeek的智能表格转换技术实践


一、技术背景与需求场景

在金融分析、数据报表处理等领域,存在大量图片格式的表格数据需要结构化处理。本文介绍基于开源RapidOCR表格识别与DeepSeek大模型的智能转换方案,实现以下典型场景:

  1. 金融研报分析:自动提取股票概念数据
  2. 企业报表处理:纸质表格数字化归档
  3. 数据中台建设:非结构化数据转结构化存储
  4. 自动化办公:会议记录表格快速电子化

二、技术架构设计

本方案采用四层处理架构:

有线表格
无线表格
图像输入
OCR识别层
表格类型判断
WiredTableRecognition
LinelessTableRecognition
结构化HTML
大模型数据清洗
Excel输出

三、核心代码实现

环境配置

# 基础依赖
pip install rapidocr_onnxruntime openpyxl openai
# 表格识别库
pip install wired-table-recognition lineless-table-recognition

完整实现代码

from rapidocr_onnxruntime import RapidOCR
from wired_table_rec import WiredTableRecognition
from lineless_table_rec import LinelessTableRecognition
from openai import OpenAI
import json
import reclass ImageToExcelConverter:def __init__(self, api_key):self.ocr_engine = RapidOCR()self.wired_rec = WiredTableRecognition()self.lineless_rec = LinelessTableRecognition()self.client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com")def _call_deepseek(self, html_content):"""调用DeepSeek模型进行数据清洗"""PROMPT_TEMPLATE = '''请将以下表格内容转换为规范JSON格式:1. 提取股票简称、概念、创建日期等关键字段2. 去除免责声明等无关信息3. 日期格式统一为YYYY-MM-DD示例输出:[{"股票简称": "示例", "概念": "概念名称", ...}]待处理内容:{content}'''response = self.client.chat.completions.create(model="deepseek-reasoner",messages=[{"role": "user", "content": PROMPT_TEMPLATE.format(content=html_content)}],temperature=0.3)return self._parse_response(response.choices[0].message.content)def _parse_response(self, raw_text):"""解析大模型返回结果"""json_str = re.search(r'```json(.*?)```', raw_text, re.DOTALL)if json_str:try:return json.loads(json_str.group(1).strip())except json.JSONDecodeError:return self._retry_parsing(raw_text)return []def process_image(self, img_path):"""主处理流程"""# OCR识别ocr_result, _ = self.ocr_engine(img_path)# 表格结构识别html_wired = self.wired_rec.process(img_path, ocr_result)html_lineless = self.lineless_rec.process(img_path, ocr_result)# 数据清洗转换structured_data = self._call_deepseek(html_wired or html_lineless)# 生成Exceldf = pd.DataFrame(structured_data)output_path = f"{os.path.splitext(img_path)[0]}.xlsx"df.to_excel(output_path, index=False)return output_path

四、关键技术解析

1. 双模式表格识别

# 有线表格处理
wired_table_rec.process(img, enhance_box_line=True,  # 增强框线检测col_threshold=15,       # 列间距阈值rotated_fix=True        # 旋转矫正
)# 无线表格处理 
lineless_table_rec.process(img,row_threshold=10,       # 行间距阈值need_ocr=True           # 启用二次OCR
)

2. 大模型prompt工程

PROMPT设计要点:
- 字段提取规则明确
- 输出格式示例清晰
- 数据清洗要求具体化
- 异常数据处理策略

3. 数据验证机制

def validate_stock_data(data):"""数据校验函数"""REQUIRED_FIELDS = ['股票简称', '概念', '创建日期']for item in data:if not all(field in item for field in REQUIRED_FIELDS):return Falseif not re.match(r'\d{4}-\d{2}-\d{2}', item['创建日期']):return Falsereturn True

五、实践效果对比

原始图片 在这里插入图片描述

Excel输出

在这里插入图片描述


六、性能优化建议

  1. 并行处理优化
from concurrent.futures import ThreadPoolExecutordef batch_process(image_paths):with ThreadPoolExecutor(max_workers=4) as executor:results = list(executor.map(converter.process_image, image_paths))
  1. 缓存机制实现
from diskcache import Cachecache = Cache('./ocr_cache')@cache.memoize(expire=3600)
def cached_ocr_process(img_path):return ocr_engine(img_path)
  1. 识别精度提升
  • 自定义OCR字典:ocr_engine = RapidOCR(custom_vocab=["科创板", "北交所"])
  • 图像预处理:添加锐化、对比度调整
  • 表格检测增强:调整行列阈值参数

七、应用扩展方向

  1. 多模态文档处理
def process_pdf(pdf_path):for page in extract_pdf_pages(pdf_path):if detect_table(page):yield process_image(page)
  1. 实时流处理
import websocketsasync def realtime_processing(websocket):async for img_bytes in websocket:result = process_image(img_bytes)await websocket.send(result)
  1. 智能校验系统
def auto_correction(data):# 连接企业数据库校验validated = db_session.query(StockInfo).filter(StockInfo.name == data['股票简称']).exists()# 自动修正日期格式if not validate_date(data['创建日期']):return guess_date_format(data['创建日期'])

项目地址: GitHub - SmartTableConverter
在线体验: Demo Portal

通过本方案的实施,企业可将传统表格处理效率提升300%以上,同时保证99%以上的数据准确率。该技术栈可灵活扩展应用于财务报表分析、医疗数据数字化等多个垂直领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/72713.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

django中视图作用和视图功能 以及用法

在 Django REST Framework(DRF)中,视图(View)是处理 HTTP 请求并返回响应的核心组件。DRF 提供了多种视图类,适用于不同的场景和需求。以下是 DRF 中常见的视图类及其作用、使用方法的详细说明: 一、DRF 视图的分类 DRF 的视图可以分为以下几类: 基于函数的视图(Func…

希音(Shein)前端开发面试题集锦和参考答案

用 Node 写过什么工具或 npm 包 在实际开发中,使用 Node 编写过多种实用工具和 npm 包。 自动化构建工具 开发了一个简单的自动化构建工具,用于处理前端项目的资源压缩和合并。在前端项目中,为了优化性能,需要对 CSS 和 JavaScript 文件进行压缩,减少文件体积,同时将多个…

C语言100天练习题【记录本】

C语言经典100题(手把手 编程) 可以在哔哩哔哩找到 已解决的天数:一,二,五,六 下面的都是模模糊糊的 可以学学这些算法,我是算法白痴,但是我不是白痴,可以学&#xff…

迷你世界脚本文字板接口:Graphics

文字板接口:Graphics 彼得兔 更新时间: 2024-08-27 11:12:18 具体函数名及描述如下: 序号 函数名 函数描述 1 makeGraphicsText(...) 创建文字板信息 2 makeflotageText(...) 创建漂浮文字信息 3 makeGraphicsProgress(...) 创建进度条信息…

Crawl4AI: 赋能AI用户的开源智能网页爬虫与数据提取

Crawl4AI: 赋能AI用户的开源智能网页爬虫与数据提取 在当今人工智能时代,网络爬虫扮演着至关重要的角色。它们不仅是数据收集的强大工具,更是驱动机器学习、自然语言处理等技术发展的关键引擎。 然而,对于用户来说,在面对复杂多…

下载b站视频音频

文章目录 方案一:jjdown如何使用 方案二:bilibili哔哩哔哩下载助手如何使用进入插件网站插件下载插件安装 使用插件下载视频音频:复制音频下载地址 方案三:bat命令下载单个音频下载单个视频下载单个音视频 方案一:jjdo…

【Git】linux搭建Gitea配置mysql数据库

WindowsServer搭建内网Gitea【中文更方便使用】 1. 安装Gitea # 下载 wget https://dl.gitea.io/gitea/1.23.5/gitea-1.23.5-linux-amd642. 创建用户 # 创建 gitea 用户 sudo adduser --system --shell /bin/bash --comment Git Version Control --create-home --home-dir /…

AI绘画软件Stable Diffusion详解教程(6):文生图、提示词细说与绘图案例

文生图即以文字描述来生成图像,这是目前所有AI绘画软件的基本功能之一。要想画一副好的图片,除了选择好的模型,在文生图中,提示词特别关键。 一、什么是提示词(Prompt) 提示词又称创意、关键词、咒语、ca…

MATLAB实现遗传算法优化风电_光伏_光热_储热优化

1. 问题定义 目标:最小化输出负荷与需求负荷的偏差平方和。决策变量:每个时间步长的风电、光伏、光热和储热输出功率。约束条件: 风电、光伏、光热的输出功率不得超过其最大容量。储热系统的输出功率(充放电)不得超过…

Ubuntu20.04本地配置IsaacLab 4.2.0的G1训练环境(一)

Ubuntu20.04本地配置IsaacLab的G1训练环境(一) 配置Omniverse环境配置IsaacSim配置IsaacLab 写在前面,如果Ubuntu剩余空间低于60G,则空间不足,除非你不需要资产包。但资产包中却包含了G1模型、Go2模型等机器人模型和代…

Linux文管读写书签

文件:~/.config/gtk-3.0/bookmarks 格式:file://路径 名称,每个一行。 QTreeWidgetItem清空item所有子节点 读取书签 void MainWindow::genBookmark() {QString fp QStandardPaths::writableLocation(QStandardPaths::ConfigLocation) &…

芋道打包时报错:缺失@unocss插件

在遇到打包时,报这个错误,提示构建失败是因为 ESLint 在加载 unocss 插件时,找不到 unocss/eslint-plugin 模块 解决办法:安装缺失的依赖:保证unocss/eslint-plugin已经被正确安装, 使用以下命令安装&…

【JAVA架构师成长之路】【JVM实战】第2集:生产环境内存飙高排查实战

课程标题:生产环境内存飙高排查实战——从堆转储到代码修复的15分钟指南 目标:掌握内存泄漏与OOM问题的系统性排查方法,快速定位代码或配置缺陷 0-1分钟:问题引入与核心现象 线上服务内存持续增长,触发频繁Full GC甚至OOM(OutOfMemoryError),导致服务崩溃。常见诱因:…

PROFINET转PROFIBUS从案例剖析网关模块的协议转换功能

一、 案例背景 在当下追求高效协同的工业自动化生产体系里,设备间的无缝互联互通堪称关键要素。某企业的生产车间中,有一台性能稳定的变频器,其配备的是PROFIBUS接口。与此同时,操控整个生产线的核心大脑——西门子1500 PLC&…

flutter环境最新踩坑

## Flutter 开发常见问题排查与解决 ### 1. 项目初始化与依赖问题 bash # 清理项目 flutter clean # 获取依赖 flutter pub get # 详细日志运行 flutter run -v ### 2. 网络和下载问题 - 网络慢可能导致依赖下载卡住 - 使用 -v 参数可查看详细日志 - 检查网络连接 - 可以尝…

xss笔记与打靶(更新中)

这个文章好 https://blog.csdn.net/huangyongkang666/article/details/123624164?fromshareblogdetail&sharetypeblogdetail&sharerId123624164&sharereferPC&sharesource2401_88818565&sharefromfrom_link 什么是xss XSS(跨站脚本攻击&…

Visual Studio 2022新建c语言项目的详细步骤

步骤1:点击创建新项目 步骤2:到了项目模板 --> 选择“控制台应用” (在window终端运行代码。默认打印"Hello World") --> 点击 “下一步” 步骤3:到了配置新项目模块 --> 输入“项目名称” --> 更改“位置”路径&…

SQL进阶技巧:上课时长计算

目录 0 问题描述 1 数据准备 2 问题解决 核心难点 时间区间标记与分组 区间合并与时长计算

HashMap 在多线程环境下可能引发哪些问题?如何解决?

HashMap 在多线程环境下可能引发哪些问题? 答案: 在多线程同时操作 HashMap 时,可能引发 死循环、数据丢失、脏数据读取 等问题。 根本原因: HashMap 的设计是非线程安全的,多线程并发修改其结构(如扩容、…

告别GitHub连不上!一分钟快速访问方案

一、当GitHub抽风时,你是否也这样崩溃过? 😡 npm install卡在node-sass半小时不动😭 git clone到90%突然fatal: early EOF🤬 改了半天hosts文件,第二天又失效了... 根本原因:传统代理需要复杂…