实例分割 | yolov11训练自己的数据集

前言

因工作要求使用的都是yolov5系列的模型,今天学习一下最先进的yolov11,记录一下环境配置及训练过程。

1.项目下载及环境安装

源码位置:yolov11
在这里插入图片描述
可以看到,这里要求python版本大于等于3.8,我这里安装python3.10.

conda create -n yolov11 python=3.10
conda activate yolov11
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

2.标注自己的数据集

标注实例分割数据集的工具有很多,这里建议labelme和AnyLabeling任意选一个。
如图所示,标注后的数据集是json格式的:
在这里插入图片描述
我们需要将其转成yolo系列需要的txt格式。
json转txt格式转化代码:

# json2txt.py
# json2txt.py
import cv2
import os
import json
import glob
import numpy as npclass_names = ["cls1_name", "cls2_name", "cls3_name", "cls4_name", "cls5_name"]def convert_json_label_to_yolov_seg_label():json_path = "F:/Desktop/hand/labels"  # 本地json路径json_files = glob.glob(json_path + "/*.json")# print(json_files)# 指定输出文件夹output_folder = "F:/Desktop/hand/labels_txt"  # txt存放路径if not os.path.exists(output_folder):os.makedirs(output_folder)for json_file in json_files:# print(json_file)with open(json_file, 'r') as f:json_info = json.load(f)img = cv2.imread(os.path.join(json_path, json_info["imagePath"]))height, width, _ = img.shapenp_w_h = np.array([[width, height]], np.int32)txt_file = os.path.join(output_folder, os.path.basename(json_file).replace(".json", ".txt"))with open(txt_file, "w") as f:for point_json in json_info["shapes"]:txt_content = ""np_points = np.array(point_json["points"], np.int32)label = point_json["label"]index = class_names.index(label)# print(type(label))norm_points = np_points / np_w_hnorm_points_list = norm_points.tolist()txt_content += str(index) + " " + " ".join([" ".join([str(cell[0]), str(cell[1])]) for cell in norm_points_list]) + "\n"f.write(txt_content)convert_json_label_to_yolov_seg_label()

转换后是这样的:
在这里插入图片描述
分割数据集,我们需要将转化成txt的数据集分割成训练集、验证集和测试集,这是分割代码:

# txt_split.py
# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os# 原始路径
image_original_path = "hhh/images/"
label_original_path = "hhh/labels_txt/"cur_path = os.getcwd()
#cur_path = 'D:/image_denoising_test/denoise/'
# 训练集路径
train_image_path = os.path.join(cur_path, "datasets/images/train/")
train_label_path = os.path.join(cur_path, "datasets/labels/train/")# 验证集路径
val_image_path = os.path.join(cur_path, "datasets/images/val/")
val_label_path = os.path.join(cur_path, "datasets/labels/val/")# 测试集路径
test_image_path = os.path.join(cur_path, "datasets/images/test/")
test_label_path = os.path.join(cur_path, "datasets/labels/test/")# 训练集目录
list_train = os.path.join(cur_path, "datasets/train.txt")
list_val = os.path.join(cur_path, "datasets/val.txt")
list_test = os.path.join(cur_path, "datasets/test.txt")train_percent = 0.8
val_percent = 0.1
test_percent = 0.1def del_file(path):for i in os.listdir(path):file_data = path + "\\" + ios.remove(file_data)def mkdir():if not os.path.exists(train_image_path):os.makedirs(train_image_path)else:del_file(train_image_path)if not os.path.exists(train_label_path):os.makedirs(train_label_path)else:del_file(train_label_path)if not os.path.exists(val_image_path):os.makedirs(val_image_path)else:del_file(val_image_path)if not os.path.exists(val_label_path):os.makedirs(val_label_path)else:del_file(val_label_path)if not os.path.exists(test_image_path):os.makedirs(test_image_path)else:del_file(test_image_path)if not os.path.exists(test_label_path):os.makedirs(test_label_path)else:del_file(test_label_path)def clearfile():if os.path.exists(list_train):os.remove(list_train)if os.path.exists(list_val):os.remove(list_val)if os.path.exists(list_test):os.remove(list_test)def main():mkdir()clearfile()file_train = open(list_train, 'w')file_val = open(list_val, 'w')file_test = open(list_test, 'w')total_txt = os.listdir(label_original_path)num_txt = len(total_txt)list_all_txt = range(num_txt)num_train = int(num_txt * train_percent)num_val = int(num_txt * val_percent)num_test = num_txt - num_train - num_valtrain = random.sample(list_all_txt, num_train)# train从list_all_txt取出num_train个元素# 所以list_all_txt列表只剩下了这些元素val_test = [i for i in list_all_txt if not i in train]# 再从val_test取出num_val个元素,val_test剩下的元素就是testval = random.sample(val_test, num_val)print("训练集数目:{}, 验证集数目:{}, 测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))for i in list_all_txt:name = total_txt[i][:-4]srcImage = image_original_path + name + '.jpg'srcLabel = label_original_path + name + ".txt"if i in train:dst_train_Image = train_image_path + name + '.jpg'dst_train_Label = train_label_path + name + '.txt'shutil.copyfile(srcImage, dst_train_Image)shutil.copyfile(srcLabel, dst_train_Label)file_train.write(dst_train_Image + '\n')elif i in val:dst_val_Image = val_image_path + name + '.jpg'dst_val_Label = val_label_path + name + '.txt'shutil.copyfile(srcImage, dst_val_Image)shutil.copyfile(srcLabel, dst_val_Label)file_val.write(dst_val_Image + '\n')else:dst_test_Image = test_image_path + name + '.jpg'dst_test_Label = test_label_path + name + '.txt'shutil.copyfile(srcImage, dst_test_Image)shutil.copyfile(srcLabel, dst_test_Label)file_test.write(dst_test_Image + '\n')file_train.close()file_val.close()file_test.close()if __name__ == "__main__":main()

3.编写训练代码并训练

我这里习惯使用代码训练,还有命令训练,如果感兴趣的朋友可以去官网了解。

# train.py
from ultralytics import YOLOif __name__ == '__main__':model = YOLO(r'ultralytics/cfg/models/11/yolo11-seg.yaml')  model.train(data=r'config.yaml',imgsz=640,epochs=800,single_cls=True,  batch=16,workers=10,device='0',)

配置文件:

# config.yaml
path: ../datasets/images  # 数据集所在路径
train: train  # 数据集路径下的train.txt
val: val  # 数据集路径下的val.txt
test: test  # 数据集路径下的test.txt# Classes
names:0: class1_name1: class2_name2: class3_name3: class4_name4: class5_name

这里的path改成你的数据集位置,如果txt_split.py在项目根目录下运行则不需要修改路径,只需要修改类别即可。
修改之后,只需要python train.py运行即可。

测试代码:

# test.py
from ultralytics import YOLO
# 加载训练好的模型,改为自己的路径
model = YOLO('runs/train/exp22/weights/best.pt')  #修改为训练好的路径
source = '11.jpg' #修改为自己的图片路径及文件名
# 运行推理,并附加参数
model.predict(source, save=True, imgsz=640)

转成onnx模型并运行:

yolo export model=runs/segment/train11/weights/best.pt imgsz=640 format=onnx opset=12 simplify
python examples/YOLOv8-Segmentation-ONNXRuntime-Python/main.py --model runs/segment/train5n/weights/bestv8.onnx

4.常见报错

RuntimeError: Trying to create tensor with negative dimension -37: [0, -37]
运行YOLOv8-Segmentation-ONNXRuntime-Python时报错,修改配置文件

参考

语义分割:YOLOv11的分割模型训练自己的数据集(从代码下载到实例测试)
在这里插入图片描述
配置文件位置在ultralytics/cfg/datasets/,如果这里一直报错can't find file,就直接写绝对路径

总结

因为项目还没完成,主要精力在此项目中,过程写的有点仓促,后面会慢慢优化文章质量,补全没完成的部分。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/72327.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大模型推理时的尺度扩展定律

大模型推理时的尺度扩展定律 FesianXu at 20250212 at Wechat Search Team 前言 大模型的尺度扩展定律告诉我们:『LLM的性能会随着模型的参数量、模型的训练量、模型的训练数据量的增加而增加』。训练存在尺度扩展定律,测试也存在尺度扩展定律&#xff…

如何使用useEffect模拟组件的生命周期?

什么是 useEffect? useEffect 是 React 提供的一个 Hook,用于处理副作用(side effects)。它允许你在函数组件中执行一些操作,这些操作通常会影响组件的渲染,比如数据获取、订阅、DOM 操作等。通过 useEffe…

Linux网络基础(协议 TCP/IP 网络传输基本流程 IP VS Mac Socket编程UDP)

文章目录 一.前言二.协议协议分层分层的好处 OSI七层模型TCP/IP五层(或四层)模型为什么要有TCP/IP协议TCP/IP协议与操作系统的关系(宏观上是如何实现的)什么是协议 三.网络传输基本流程局域网(以太网为例)通信原理MAC地址令牌环网 封装与解包分用 四.IP地址IP VS Mac地址 五.So…

网络安全-使用DeepSeek来获取sqlmap的攻击payload

文章目录 概述DeepSeek使用创建示例数据库创建API测试sqlmap部分日志参考 概述 今天来使用DeepSeek做安全测试,看看在有思路的情况下实现的快不快。 DeepSeek使用 我有一个思路,想要测试sqlmap工具如何dump数据库的: 连接mysql数据库&#…

AI绘画软件Stable Diffusion详解教程(2):Windows系统本地化部署操作方法(专业版)

一、事前准备 1、一台配置不错的电脑,英伟达显卡,20系列起步,建议显存6G起步,安装win10或以上版本,我的显卡是40系列,16G显存,所以跑大部分的模型都比较快; 2、科学上网&#xff0…

Linux NAT和代理服务器

目录 0.前言 1.NAT 网络地址转换 1.1 NAT 技术背景 1.2 NAT的定义与分类 1.3 NAT的工作原理 1.4 NAT的缺陷 2.代理服务器 2.1 概述 2.2 正向代理 2.3 反向代理 2.4 NAT 与代理服务器的区别和联系 3.小结 (图像由AI生成) 0.前言 在前面的文章中&#x…

AI学习第七天

数组:基础概念、存储特性及力扣实战应用 在计算机科学与数学的广袤领域中,数组作为一种极为重要的数据结构,发挥着不可或缺的作用。它就像一个有序的 “数据仓库”,能高效地存储和管理大量数据。接下来,让我们深入了解…

ue5 创建多列StreeView的方法与理解

创建StreeView的多列样式怎么就像是创建单行单列差不多?貌似就是在单行单列中加入了多列widget? 示例代码 DetailTabWidget #pragma once #include "TreeViewItemBase.h"class SDetailTabWidget : public SCompoundWidget {SLATE_BEGIN_ARGS(SDetailTabWidget){…

Linux之yum详解

—— 小 峰 编 程 目录 1、Linux软件的安装方式 2、什么是yum 3、配置网络yum源 4、yum命令 【语法】 【yum常用命令】 1、Linux软件的安装方式 在CentOS系统中,软件管理方式通常有三种方式: rpm安装 、 yum安装 以及 编译安装 。 2、什么是yum…

lvgl运行机制分析

lv_timer_handler() 是 LVGL 的“心脏”:这个函数会依次做以下事情: 处理定时器(如动画、延迟回调)。 读取输入设备(如触摸屏、按键的状态)。 刷新脏区域(仅重绘屏幕上发生变化的区域&#xf…

达梦数据库授权给某个用户查询其他指定用户下所有表的权限

方法1: 新版本有一个数据库参数 GRANT_SCHEMA,表示是否开启授予和回收模式权限功能。0:否;1:是 此参数为静态参数,默认是0,将改参数修改为1后,重启数据库生效。 将参数修改为1 S…

人大金仓国产数据库与PostgreSQL

一、简介 在前面项目中,我们使用若依前后端分离整合人大金仓,在后续开发过程中,我们经常因为各种”不适配“问题,但可以感觉得到大部分问题,将人大金仓视为postgreSQL就能去解决大部分问题。据了解,Kingba…

Python之参数星号(*)使用笔记

背景 在学习python时发现方法调用和方法定义会经常发现有带星号的标记,为了弄明白是怎么使用的。特此做个笔记。 一、参数符号对比速查表 符号类使用场景作用描述示例无符号函数定义/调用普通位置参数或关键字参数.def func(a, b)*函数定义收集多余位置参数为元组…

使用haproxy实现MySQL服务器负载均衡

一、环境准备 主机名IP地址备注openEuler-1192.168.121.11mysql-server-1openEuler-2192.168.121.12mysql-server-2openEuler-3192.168.121.13clientRocky-1192.168.121.51haproxy 二、mysql-server配置 [rootopenEuler-1 ~]# yum install -y mariadb-server [rootopenEuler…

Python与Web3.py库:构建去中心化应用的未来

Python与Web3.py库:构建去中心化应用的未来 在区块链的世界里,“去中心化”是最核心的理念之一,它赋予了用户更多的控制权和自由,消除了传统中心化系统中的单点故障和信任问题。而在这场技术革命中,Web3.0无疑是最受瞩…

对“预训练”的理解

预训练有什么用 传统的机器学习是偏数学的,对数据的量不做过多要求,而深度学习的项目通常是有大量的数据可供使用。 在平常的任务或者项目中,我们可能并没有大量数据,只有少量数据,在这时我们就可以通过“借用”有大…

VMware Ubuntu 共享目录

在VMware中挂载Ubuntu共享目录需要以下步骤,分为设置共享文件夹和在Ubuntu中挂载两部分: 一、VMware 设置共享文件夹 关闭Ubuntu虚拟机 在配置前,建议先关闭虚拟机(若已运行需关闭,部分VMware版本支持热添加&#xff0…

AF3 crop_chains函数解读

AlphaFold3 feature_processing_multimer模块的crop_chains函数的功能是对多条链的蛋白质结构预测任务中的MSA(多序列比对)特征和模板特征进行裁剪(cropping)。裁剪的目的是为了控制输入模型的MSA序列数量和模板数量,以适应模型的输入限制或优化计算效率。 源代码: def…

Java基础-数组,集合创建方式

Java 中 new 关键字的作用 在 Java 中,new 关键字用于 在堆内存中分配空间 并创建对象。 数组 和 集合 在 Java 中都是对象,因此必须使用 new 来创建实例。Java 和 C 之间的主要区别在于 内存管理 和 对象的创建方式。 Java 与 C 中数组 & 集合的创…

LeeCode题库第三十九题

39.组合总和 项目场景: 给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。 candidates 中的 同…