【Java】多线程和高并发编程(四):阻塞队列(上)基础概念、ArrayBlockingQueue

文章目录

  • 四、阻塞队列
    • 1、基础概念
      • 1.1 生产者消费者概念
      • 1.2 JUC阻塞队列的存取方法
    • 2、ArrayBlockingQueue
      • 2.1 ArrayBlockingQueue的基本使用
      • 2.2 生产者方法实现原理
        • 2.2.1 ArrayBlockingQueue的常见属性
        • 2.2.2 add方法实现
        • 2.2.3 offer方法实现
        • 2.2.4 offer(time,unit)方法
        • 2.2.5 put方法
      • 2.3 消费者方法实现原理
        • 2.3.1 remove方法
        • 2.4.2 poll方法
        • 2.4.3 poll(time,unit)方法
        • 2.4.4 take方法
        • 2.4.5 虚假唤醒

在这里插入图片描述
个人主页:道友老李
欢迎加入社区:道友老李的学习社区

四、阻塞队列

1、基础概念

1.1 生产者消费者概念

生产者消费者是设计模式的一种。让生产者和消费者基于一个容器来解决强耦合问题。

生产者 消费者彼此之间不会直接通讯的,而是通过一个容器(队列)进行通讯。

所以生产者生产完数据后扔到容器中,不通用等待消费者来处理。

消费者不需要去找生产者要数据,直接从容器中获取即可。

而这种容器最常用的结构就是队列。

1.2 JUC阻塞队列的存取方法

常用的存取方法都是来自于JUC包下的BlockingQueue

生产者存储方法

add(E)     	// 添加数据到队列,如果队列满了,无法存储,抛出异常
offer(E)    // 添加数据到队列,如果队列满了,返回false
offer(E,timeout,unit)   // 添加数据到队列,如果队列满了,阻塞timeout时间,如果阻塞一段时间,依然没添加进入,返回false
put(E)      // 添加数据到队列,如果队列满了,挂起线程,等到队列中有位置,再扔数据进去,死等!

消费者取数据方法

remove()    // 从队列中移除数据,如果队列为空,抛出异常
poll()      // 从队列中移除数据,如果队列为空,返回null,么的数据
poll(timeout,unit)   // 从队列中移除数据,如果队列为空,挂起线程timeout时间,等生产者扔数据,再获取
take()     // 从队列中移除数据,如果队列为空,线程挂起,一直等到生产者扔数据,再获取

2、ArrayBlockingQueue

2.1 ArrayBlockingQueue的基本使用

ArrayBlockingQueue在初始化的时候,必须指定当前队列的长度。

因为ArrayBlockingQueue是基于数组实现的队列结构,数组长度不可变,必须提前设置数组长度信息。

public static void main(String[] args) throws ExecutionException, InterruptedException, IOException {// 必须设置队列的长度ArrayBlockingQueue queue = new ArrayBlockingQueue(4);// 生产者扔数据queue.add("1");queue.offer("2");queue.offer("3",2,TimeUnit.SECONDS);queue.put("2");// 消费者取数据System.out.println(queue.remove());System.out.println(queue.poll());System.out.println(queue.poll(2,TimeUnit.SECONDS));System.out.println(queue.take());
}

2.2 生产者方法实现原理

生产者添加数据到队列的方法比较多,需要一个一个查看

2.2.1 ArrayBlockingQueue的常见属性

ArrayBlockingQueue中的成员变量

lock = 就是一个ReentrantLock
count = 就是当前数组中元素的个数
iterms = 就是数组本身
# 基于putIndex和takeIndex将数组结构实现为了队列结构
putIndex = 存储数据时的下标
takeIndex = 去数据时的下标
notEmpty = 消费者挂起线程和唤醒线程用到的Condition(看成sync的wait和notify)
notFull = 生产者挂起线程和唤醒线程用到的Condition(看成sync的wait和notify)
2.2.2 add方法实现

add方法本身就是调用了offer方法,如果offer方法返回false,直接抛出异常

public boolean add(E e) {if (offer(e))return true;else// 抛出的异常throw new IllegalStateException("Queue full");
}
2.2.3 offer方法实现
public boolean offer(E e) {// 要求存储的数据不允许为null,为null就抛出空指针checkNotNull(e);// 当前阻塞队列的lock锁final ReentrantLock lock = this.lock;// 为了保证线程安全,加锁lock.lock();try {// 如果队列中的元素已经存满了,if (count == items.length)// 返回falsereturn false;else {// 队列没满,执行enqueue将元素添加到队列中enqueue(e);// 返回truereturn true;}} finally {// 操作完释放锁lock.unlock();}
}//==========================================================
private void enqueue(E x) {// 拿到数组的引用final Object[] items = this.items;// 将元素放到指定位置items[putIndex] = x;// 对inputIndex进行++操作,并且判断是否已经等于数组长度,需要归位if (++putIndex == items.length)// 将索引设置为0putIndex = 0;// 元素添加成功,进行++操作。count++;// 将一个Condition中阻塞的线程唤醒。notEmpty.signal();
}
2.2.4 offer(time,unit)方法

生产者在添加数据时,如果队列已经满了,阻塞一会。

  • 阻塞到消费者消费了消息,然后唤醒当前阻塞线程
  • 阻塞到了time时间,再次判断是否可以添加,不能,直接告辞。
// 如果线程在挂起的时候,如果对当前阻塞线程的中断标记位进行设置,此时会抛出异常直接结束
public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException {// 非空检验checkNotNull(e);// 将时间单位转换为纳秒long nanos = unit.toNanos(timeout);// 加锁final ReentrantLock lock = this.lock;// 允许线程中断并排除异常的加锁方式lock.lockInterruptibly();try {// 为什么是while(虚假唤醒)// 如果元素个数和数组长度一致,队列慢了while (count == items.length) {// 判断等待的时间是否还充裕if (nanos <= 0)// 不充裕,直接添加失败return false;// 挂起等待,会同时释放锁资源(对标sync的wait方法)// awaitNanos会挂起线程,并且返回剩余的阻塞时间// 恢复执行时,需要重新获取锁资源nanos = notFull.awaitNanos(nanos);}// 说明队列有空间了,enqueue将数据扔到阻塞队列中enqueue(e);return true;} finally {// 释放锁资源lock.unlock();}
}
2.2.5 put方法

如果队列是满的, 就一直挂起,直到被唤醒,或者被中断

public void put(E e) throws InterruptedException {checkNotNull(e);final ReentrantLock lock = this.lock;lock.lockInterruptibly();try {while (count == items.length)// await方法一直阻塞,直到被唤醒或者中断标记位notFull.await();enqueue(e);} finally {lock.unlock();}
}

2.3 消费者方法实现原理

2.3.1 remove方法
// remove方法就是调用了poll
public E remove() {E x = poll();// 如果有数据,直接返回if (x != null)return x;// 没数据抛出异常elsethrow new NoSuchElementException();
}
2.4.2 poll方法
// 拉取数据
public E poll() {// 加锁操作final ReentrantLock lock = this.lock;lock.lock();try {// 如果没有数据,直接返回null,如果有数据,执行dequeue,取出数据并返回return (count == 0) ? null : dequeue();} finally {lock.unlock();}
}//==========================================================
// 取出数据
private E dequeue() {// 将成员变量引用到局部变量final Object[] items = this.items;// 直接获取指定索引位置的数据E x = (E) items[takeIndex];// 将数组上指定索引位置设置为nullitems[takeIndex] = null;// 设置下次取数据时的索引位置if (++takeIndex == items.length)takeIndex = 0;// 对count进行--操作count--;// 迭代器内容,先跳过if (itrs != null)itrs.elementDequeued();// signal方法,会唤醒当前Condition中排队的一个Node。// signalAll方法,会将Condition中所有的Node,全都唤醒notFull.signal();// 返回数据。return x;
}
2.4.3 poll(time,unit)方法
public E poll(long timeout, TimeUnit unit) throws InterruptedException {// 转换时间单位long nanos = unit.toNanos(timeout);// 竞争锁final ReentrantLock lock = this.lock;lock.lockInterruptibly();try {// 如果没有数据while (count == 0) {if (nanos <= 0)// 没数据,也无法阻塞了,返回nullreturn null;// 没数据,挂起消费者线程nanos = notEmpty.awaitNanos(nanos);}// 取数据return dequeue();} finally {lock.unlock();}
}
2.4.4 take方法
public E take() throws InterruptedException {final ReentrantLock lock = this.lock;lock.lockInterruptibly();try {// 虚假唤醒while (count == 0)notEmpty.await();return dequeue();} finally {lock.unlock();}
}
2.4.5 虚假唤醒

阻塞队列中,如果需要线程挂起操作,判断有无数据的位置采用的是while循环 ,为什么不能换成if

肯定是不能换成if逻辑判断

线程A,线程B,线程E,线程C。 其中ABE生产者,C属于消费者

假如线程的队列是满的

// E,拿到锁资源,还没有走while判断
while (count == items.length)// A醒了// B挂起notFull.await();
enqueue(e)

C此时消费一条数据,执行notFull.signal()唤醒一个线程,A线程被唤醒

E走判断,发现有空余位置,可以添加数据到队列,E添加数据,走enqueue

如果判断是if,A在E释放锁资源后,拿到锁资源,直接走enqueue方法。

此时A线程就是在putIndex的位置,覆盖掉之前的数据,造成数据安全问题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/70694.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Java】多线程和高并发编程(三):锁(下)深入ReentrantReadWriteLock

文章目录 4、深入ReentrantReadWriteLock4.1 为什么要出现读写锁4.2 读写锁的实现原理4.3 写锁分析4.3.1 写锁加锁流程概述4.3.2 写锁加锁源码分析4.3.3 写锁释放锁流程概述&释放锁源码 4.4 读锁分析4.4.1 读锁加锁流程概述4.4.1.1 基础读锁流程4.4.1.2 读锁重入流程4.4.1.…

【R语言】相关系数

一、cor()函数 cor()函数是R语言中用于计算相关系数的函数&#xff0c;相关系数用于衡量两个变量之间的线性关系强度和方向。 常见的相关系数有皮尔逊相关系数&#xff08;Pearson correlation coefficient&#xff09;、斯皮尔曼秩相关系数&#xff08;Spearmans rank corre…

Web - CSS3过渡与动画

过渡 基本使用 transition过渡属性是css3浓墨重彩的特性&#xff0c;过渡可以为一个元素在不同样式之间变化自动添加补间动画。 过渡从kIE10开始兼容&#xff0c;移动端兼容良好&#xff0c;网页上的动画特效基本都是由JavaScript定时器实现的&#xff0c;现在逐步改为css3过…

Unity 高度可扩展的技能与多 Buff 框架详解

一、框架设计 1.1 核心思想 组件化设计: 将技能和 Buff 抽象为可复用的组件&#xff0c;通过组合不同的组件实现复杂的效果。 数据驱动: 使用 ScriptableObject 或 JSON 等数据格式定义技能和 Buff 的属性&#xff0c;方便配置和修改。 事件驱动: 利用 Unity 的事件系统或自…

编译和链接【一】

文章目录 编译和链接【一】从翻译单元到二进制文件 编译和链接【一】 在我大一的时候&#xff0c; 我使用VC6.0对C语言程序进行编译链接和运行 &#xff0c; 然后我接触了VS&#xff0c; VS code等众多IDE&#xff0c; 这些IDE界面友好&#xff0c; 使用方便&#xff0c; 例如…

图像锐化(QT)

如果不使用OpenCV&#xff0c;我们可以直接使用Qt的QImage类对图像进行像素级操作来实现锐化。锐化算法的核心是通过卷积核&#xff08;如拉普拉斯核&#xff09;对图像进行处理&#xff0c;增强图像的边缘和细节。 以下是一个完整的Qt应用程序示例&#xff0c;展示如何使用Qt…

迅雷下载的原理和使用协议的分析

迅雷作为一款广泛使用的下载工具&#xff0c;其核心原理是通过整合多种下载协议和资源分发技术来提升下载速度。以下是对其原理及协议的详细分析&#xff1a; 一、迅雷下载的核心原理 多协议混合下载&#xff08;P2SP&#xff09; P2SP&#xff08;Peer-to-Server-Peer&#xf…

【动手学运动规划】5.4 二次规划问题:QP优化

站在天堂看地狱&#xff0c;人生就像情景剧&#xff1b;站在地狱看天堂&#xff0c;为谁辛苦为谁忙。 —武林外传 白展堂 &#x1f3f0;代码及环境配置&#xff1a;请参考 环境配置和代码运行! 在运动规划算法中, QP优化是非常常见的优化问题形式, 本节我们将进行介绍. 5.4.1…

Linux: ASoC 声卡硬件参数的设置过程简析

文章目录 1. 前言2. ASoC 声卡设备硬件参数2.1 将 DAI、Machine 平台的硬件参数添加到声卡2.2 打开 PCM 流时将声卡硬件参数配置到 PCM 流2.3 应用程序对 PCM 流参数进行修改调整 1. 前言 限于作者能力水平&#xff0c;本文可能存在谬误&#xff0c;因此而给读者带来的损失&am…

ansible使用学习

一、查询手册 1、官网 ansible官网地址&#xff1a;https://docs.ansible.com 模块查看路径&#xff1a;https://docs.ansible.com/ansible/latest/collections/ansible/builtin/index.html#plugins-in-ansible-builtin 2、命令 ansible-doc -s command二、相关脚本 1、服务…

jmap使用

常用命令 jmap -heap PID jmap -histo PID | head -20 jmap -dump:formatb,fileheap_dump.hprof PID jmap 是 Java 开发工具包&#xff08;JDK&#xff09;提供的一个命令行工具&#xff0c;用于生成 Java 进程的内存映射信息。它可以帮助开发者分析 Java 堆内存的使用情况…

RabbitMQ 如何设置限流?

RabbitMQ 的限流&#xff08;流量控制&#xff09;主要依赖于 QoS&#xff08;Quality of Service&#xff09; 机制&#xff0c;即 prefetch count 参数。这个参数控制每个消费者一次最多能获取多少条未确认的消息&#xff0c;从而避免某个消费者被大量消息压垮。 1. RabbitMQ…

第四十八章:黄山之行:与小一的奇妙冒险

自从小泽泽满月酒过后&#xff0c;小冷一家的生活又恢复了往日的温馨与忙碌。小泽泽在家人的悉心照料下茁壮成长&#xff0c;而小冷和小颖也在工作与家庭之间努力平衡着。2024 年 11 月&#xff0c;秋意正浓&#xff0c;山林间五彩斑斓&#xff0c;空气中弥漫着清爽的气息。小冷…

基于 SpringBoot 和 Vue 的智能腰带健康监测数据可视化平台开发(文末联系,整套资料提供)

基于 SpringBoot 和 Vue 的智能腰带健康监测数据可视化平台开发 一、系统介绍 随着人们生活水平的提高和健康意识的增强&#xff0c;智能健康监测设备越来越受到关注。智能腰带作为一种新型的健康监测设备&#xff0c;能够实时采集用户的腰部健康数据&#xff0c;如姿势、运动…

2025.2.8 寒假综合训练赛2题解

A. 博弈 Link&#xff1a;P1290 欧几里德的游戏 博弈类的题目&#xff0c;首先考虑找找有什么性质&#xff0c;从而找到“必胜态”和“必败态”。 其中&#xff0c;面对“必胜态”不一定取胜&#xff08;看个人操作的好坏&#xff09;&#xff0c;但面对“必败态”一定输&am…

docker离线安装及部署各类中间件(x86系统架构)

前言&#xff1a;此文主要针对需要在x86内网服务器搭建系统的情况 一、docker离线安装 1、下载docker镜像 https://download.docker.com/linux/static/stable/x86_64/ 版本&#xff1a;docker-23.0.6.tgz 2、将docker-23.0.6.tgz 文件上传到服务器上面&#xff0c;这里放在…

Spring Boot 中的日志配置

文章目录 Spring Boot 中日志配置的源码分析1. Spring Boot 日志框架的选择与自动配置2. 日志自动配置与默认行为3. 日志系统的核心组件&#xff1a;Logger 和 LoggerFactory4. 日志配置文件的解析配置日志级别配置日志输出格式和目标 5. 日志级别的控制自定义日志级别 6. 自定…

从零到一:我的元宵灯谜小程序诞生记

缘起&#xff1a;一碗汤圆引发的灵感 去年元宵节&#xff0c;我正捧着热腾腾的汤圆刷朋友圈&#xff0c;满屏都是"转发锦鲤求灯谜答案"的动态。看着大家对着手机手忙脚乱地切换浏览器查答案&#xff0c;我突然拍案而起&#xff1a;为什么不做一个能即时猜灯谜的微信…

CSS3+动画

浏览器内核以及其前缀 css标准中各个属性都要经历从草案到推荐的过程&#xff0c;css3中的属性进展都不一样&#xff0c;浏览器厂商在标准尚未明确的情况下提前支持会有风险&#xff0c;浏览器厂商对新属性的支持情况也不同&#xff0c;所有会加厂商前缀加以区分。如果某个属性…

2025.2.8——二、Confusion1 SSTI模板注入|Jinja2模板

题目来源&#xff1a;攻防世界 Confusion1 目录 一、打开靶机&#xff0c;整理信息 二、解题思路 step 1&#xff1a;查看网页源码信息 step 2&#xff1a;模板注入 step 3&#xff1a;构造payload&#xff0c;验证漏洞 step 4&#xff1a;已确认为SSTI漏洞中的Jinjia2…