【Block总结】OutlookAttention注意力,捕捉细节和局部特征|即插即用

论文信息

  • 标题: VOLO: Vision Outlooker for Visual Recognition
  • 作者: Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, Shuicheng Yan
  • 代码链接: https://github.com/sail-sg/volo
  • 论文链接: https://arxiv.org/pdf/2106.13112
    在这里插入图片描述

创新点

  • 前景注意力机制: VOLO引入了一种称为“outlook attention”的新型注意力机制,能够动态地在输入图像上进行局部特征聚合。这种机制专注于编码细粒度特征,而不是传统自注意力机制所关注的全局依赖性,从而提高了模型在视觉识别任务中的表现。
  • 高效的特征编码: VOLO通过滑动窗口的方式进行局部特征聚合,打破了自注意力机制在计算复杂度上的瓶颈,使得模型在内存使用上更加高效。
    在这里插入图片描述

方法

  • 模型架构: VOLO的架构相对简单,主要包括以下几个部分:
    • Outlook Attention: 该机制通过局部窗口内的相似度计算生成注意力权重,有效地聚合细粒度特征。
    • 多层感知机(MLP): 用于进一步处理和整合特征,增强模型的表达能力。

实验结果

  • ImageNet-1K分类任务: VOLO在该任务中实现了87.1%的top-1准确率,成为首个在该数据集上超过87%准确率的模型,且未使用任何额外训练数据。与其他模型相比,VOLO在参数量仅为296M的情况下,表现出色,显示出其高效性。
  • 下游任务表现: VOLO在CityScapes和ADE20K等下游任务中也表现优异,分别取得了84.3%和54.3%的mIoU(平均交并比)得分,证明了其良好的迁移学习能力。

总结

VOLO通过引入前景注意力机制和高效的特征编码方法,显著提升了视觉识别模型的性能,尤其是在细粒度特征的处理上。该模型在多个标准数据集上取得了优异的成绩,为未来的视觉识别研究提供了新的思路和方向。VOLO的设计理念和实验结果表明,基于注意力的模型在视觉识别领域具有广泛的应用潜力。

代码

import torch
import torch.nn as nn
import math
import torch.nn.functional as Fclass OutlookAttention(nn.Module):"""Implementation of outlook attention--dim: hidden dim--num_heads: number of heads--kernel_size: kernel size in each window for outlook attentionreturn: token features after outlook attention"""def __init__(self, dim, num_heads, kernel_size=3, padding=1, stride=1,qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):super().__init__()head_dim = dim // num_headsself.num_heads = num_headsself.kernel_size = kernel_sizeself.padding = paddingself.stride = strideself.scale = qk_scale or head_dim**-0.5self.v = nn.Linear(dim, dim, bias=qkv_bias)self.attn = nn.Linear(dim, kernel_size**4 * num_heads)self.attn_drop = nn.Dropout(attn_drop)self.proj = nn.Linear(dim, dim)self.proj_drop = nn.Dropout(proj_drop)self.unfold = nn.Unfold(kernel_size=kernel_size, padding=padding, stride=stride)self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True)def forward(self, x):B, H, W, C = x.shapev = self.v(x).permute(0, 3, 1, 2)  # B, C, H, Wh, w = math.ceil(H / self.stride), math.ceil(W / self.stride)v = self.unfold(v).reshape(B, self.num_heads, C // self.num_heads,self.kernel_size * self.kernel_size,h * w).permute(0, 1, 4, 3, 2)  # B,H,N,kxk,C/Hattn = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)attn = self.attn(attn).reshape(B, h * w, self.num_heads, self.kernel_size * self.kernel_size,self.kernel_size * self.kernel_size).permute(0, 2, 1, 3, 4)  # B,H,N,kxk,kxkattn = attn * self.scaleattn = attn.softmax(dim=-1)attn = self.attn_drop(attn)x = (attn @ v).permute(0, 1, 4, 3, 2).reshape(B, C * self.kernel_size * self.kernel_size, h * w)x = F.fold(x, output_size=(H, W), kernel_size=self.kernel_size,padding=self.padding, stride=self.stride)x = self.proj(x.permute(0, 2, 3, 1))x = self.proj_drop(x)return xif __name__ == "__main__":# 如果GPU可用,将模块移动到 GPUdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 输入张量 (batch_size, height, width,channels)x = torch.randn(1,40,40,32).to(device)# 初始化 OutlookAttention 模块dim=32block = OutlookAttention(dim,8)print(block)block = block.to(device)# 前向传播output = block(x)print("输入:", x.shape)print("输出:", output.shape)

输出结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/69665.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Unity3D】实现横版2D游戏角色二段跳、蹬墙跳、扶墙下滑

目录 一、二段跳、蹬墙跳 二、扶墙下滑 一、二段跳、蹬墙跳 GitHub - prime31/CharacterController2D 下载工程后直接打开demo场景:DemoScene(Unity 2019.4.0f1项目环境) Player物体上的CharacterController2D,Mask添加Wall层…

premierePro 2022创建序列方式

概念 序列类似于画画的画布,类似ps的蒙层 一、新建序列方式 1、文件-新建-序列 2、直接将视频拖入时间轴(没有序列时,如果有序列不行) 3、右键右下角空白处 4、点击新建项按钮

九大服务构建高效 AIOps 平台,全面解决GenAI落地挑战

最近,DevOps运动的联合创始人Patrick Debois分享了他对AI平台与软件研发关系的深刻见解,让我们一起来探讨这个话题。 在AI的落地过程中,我们面临着两个主要难题: 引入AI编码工具后的开发者角色转变:随着像GitHub Copilot这样的AI工具的普及,工程师的角色正在发生深刻变革…

Golang :用Redis构建高效灵活的应用程序

在当前的应用程序开发中,高效的数据存储和检索的必要性已经变得至关重要。Redis是一个快速的、开源的、内存中的数据结构存储,为各种应用场景提供了可靠的解决方案。在这个完整的指南中,我们将学习什么是Redis,通过Docker Compose…

对顾客行为的数据分析:融入2+1链动模式、AI智能名片与S2B2C商城小程序的新视角

摘要:随着互联网技术的飞速发展,企业与顾客之间的交互方式变得日益多样化,移动设备、社交媒体、门店、电子商务网站等交互点应运而生。这些交互点不仅为顾客提供了便捷的服务体验,同时也为企业积累了大量的顾客行为数据。本文旨在…

毕业设计--具有车流量检测功能的智能交通灯设计

摘要: 随着21世纪机动车保有量的持续增加,城市交通拥堵已成为一个日益严重的问题。传统的固定绿灯时长方案导致了大量的时间浪费和交通拥堵。为解决这一问题,本文设计了一款智能交通灯系统,利用车流量检测功能和先进的算法实现了…

跨平台物联网漏洞挖掘算法评估框架设计与实现文献综述之总结与展望

当前的物联网设备的漏洞挖掘技术在静态分析、动态模糊测试、同源性分析技术上都有一定的进展。其中, 静态分析技术能够有效解决固件的解析, 以及固件中通用漏洞的分析问题。但对于物联网设备特定漏洞的高效分析, 仍然缺乏深入的思考和探究。此外, 对于无操作系统和包含特定嵌入…

算法题(51):删除链表的倒数第N个节点

审题: 需要我们找到倒数第n个节点,并把他从链表中删除,然后把新的链表的头结点返回 思路: 该题的唯一难点就是如何找到单链表的倒数第n个节点 方法一:直接法 我们可以遍历一次单链表,然后把链表的总长度求出…

负荷预测算法模型

1. 时间序列分析方法 时间序列分析方法是最早被用来进行电力负荷预测的方法之一,它基于历史数据来构建数学模型,以描述时间与负荷值之间的关系。这种方法通常只考虑时间变量,不需要大量的输入数据,因此计算速度快。然而&#xff…

Ansible自动化运维实战--yaml的使用和配置(7/8)

文章目录 一、YAML 基本语法1.1. 缩进1.2. 注释1.3. 列表1.4. 字典 二、Ansible 中 YAML 的应用2.1. Ansible 剧本(Playbooks)2.2. 变量定义2.3. 角色(Roles)2.4. Inventory 文件2.5. 数据类型2.6. 引用变量 在 Ansible 里&#x…

JavaScript_02 表单

表单常用演示: 1.图片 结果失真了... 2.切换图片 切换结果 3.表单:

快速提升网站收录:利用网站日志分析

本文转自:百万收录网 原文链接:https://www.baiwanshoulu.com/31.html 利用网站日志分析是快速提升网站收录的有效手段之一。以下是一些关键步骤和策略,指导你如何利用网站日志分析来优化网站并提升收录速度: 一、收集与整理网站…

使用Navicat Premium管理数据库时,如何关闭事务默认自动提交功能?

使用Navicat Premium管理数据库时,最糟心的事情莫过于事务默认自动提交,也就是你写完语句运行时,它自动执行commit提交至数据库,此时你就无法进行回滚操作。 建议您尝试取消勾选“选项”中的“自动开始事务”,点击“工…

android获取EditText内容,TextWatcher按条件触发

android获取EditText内容,TextWatcher按条件触发 背景:解决方案:效果: 背景: 最近在尝试用原生安卓实现仿element-ui表单校验功能,其中涉及到EditText组件内容的动态校验,初步实现功能后&#…

一文了解性能优化的方法

背景 在应用上线后,用户感知较明显的,除了功能满足需求之外,再者就是程序的性能了。因此,在日常开发中,我们除了满足基本的功能之外,还应该考虑性能因素。关注并可以优化程序性能,也是体现开发能…

认知神经科学0-----关于心智的生物学(2011年第三版)

译者序 人类的科学事业所面临的挑战之一-就是认识意识与物质或心灵(智慧)与大脑的关系。从古希腊哲学先贤或更早的时代开始,人类对这一-古 老问题就有了大量的探讨或臆测;但仅仅是在近代和现代,人们才真正在科学的意义上探索心智与大脑的关系。脑…

星际战争模拟系统:新月的编程之道

星际战争模拟系统:新月的编程之道 作为一名在 25 世纪星际时代成长起来的科学家和军事战略家,我对编程和人工智能的热爱始于童年。我的父亲是一位著名的物理学家,母亲是一位杰出的生物工程师。在他们的影响下,我从小就对科学和技术…

从零搭建一个Vue3 + Typescript的脚手架——day3

3.项目拓展配置 (1).配置Pinia Pinia简介 Pinia 是 Vue.js 3 的状态管理库,它是一个轻量级、灵活、易于使用的状态管理库。Pinia 是 Vue.js 3 的官方状态管理库,它可以帮助开发者更好地管理应用的状态。Pinia 是一个开源项目,它有丰富的文档…

网络攻防实战指北专栏讲解大纲与网络安全法

专栏 本专栏为网络攻防实战指北,大纲如下所示 进度:目前已更完准备篇、HTML基础 计划:所谓基础不牢,地动山摇。所以下一步将持续更新基础篇内容 讲解信息安全时,结合《中华人民共和国网络安全法》(以下简…