在亚马逊云科技上用Stable Diffusion 3.5 Large生成赛博朋克风图片(下)

背景介绍

在2024年的亚马逊云科技re:Invent大会上提前预告发布的Stable Diffusion 3.5 Large,现在已经在Amazon Bedrock上线了!各位开发者们现在可以使用该模型,根据文本提示词文生图生成高质量的图片,并且支持多种图片风格生成,助力媒体、游戏、广告和零售等行业的开发者们加速概念艺术、视觉特效以及精修产品宣传图的生成创作。

2024年10月,图像生成模型厂商Stability AI发布了Stable Diffusion 3.5 Large,这是Stable Diffusion系列中目前最强大的模型,拥有81亿个参数,值得一提的是该模型也是在Amazon SageMaker HyperPod上进行训练的,该模型可以生成极高的图像质量并具有出色的提示词匹配能力。Stable Diffusion 3.5 Large可增效开发者们在故事插画制作、概念艺术创作以及视觉特效应用的快速原型开发。大家可以快速生成高质量的高达1兆像素图片,适用于媒体营销活动、社交媒体文章插图和广告,既可以节省时间和资源,又能以上场景中的增强图像创意效果。

在本系列的上篇中,我们介绍了在亚马逊云科技控制台中,通过Stable Diffusion 3.5 Large模型生成图片的具体步骤操作,手把手和大家生成了一个赛博朋克风的图片。在本系列的下篇中,我们将通过API调用的方式进行图片生成,并展示Stable Diffusion 3.5 Large模型更多的图片生成场景。

 

如果调用Python SDK API生成图片?

下面小李哥会分享通过两种方式调用Stable Diffusion 3.5 Large生成图片。首先要介绍的是通过aws cli命令行调用图片生成的api - invoke-model。我们接下来会在命令工具中通过一条命令获取生成的图像,并将输出的JSON格式响应以标准格式输出,并使用jq工具提取编码后的图像,最后将其解码并将结果写入img.png文件,直接打开即可获取输出的图像。

以下是 AWS CLI 命令的示例:

$ aws bedrock-runtime invoke-model \--model-id stability.sd3-5-large-v1:0 \--body "{\"prompt\":\"High-energy street scene in a neon-lit Tokyo alley at night, where steam rises from food carts, and colorful neon signs illuminate the rain-slicked pavement.\",\"mode\":\"text-to-image\",\"aspect_ratio\":\"1:1\",\"output_format\":\"jpeg\",\"seed\":0}" \--cli-binary-format raw-in-base64-out \--region us-west-2 \
/dev/stdout | jq -r '.images[0]' | base64 --decode > img.jpg

如果大家希望在生成式AI应用中集成Stable Diffusion 3.5 Large模型,可以使用亚马逊云科技的SDK for Python(Boto3) 。接下来我将分享调用模型生成图片的代码段,使用的模型是Stable Image Ultra 1.1(该模型的底层架构即为Stable Diffusion 3.5 Large)。下面这个代码段会在请求中添加文本到图像的提示词,并调用Amazon Bedrock生成图像,使用的模型ID为“stability.stable-image-ultra-v1:1”。

import base64
import boto3
import json
import osMODEL_ID = "stability.stable-image-ultra-v1:1"bedrock_runtime = boto3.client("bedrock-runtime", region_name="us-west-2")print("Enter a prompt for the text-to-image model:")
prompt = input()body = {"prompt": prompt,"mode": "text-to-image"
}
response = bedrock_runtime.invoke_model(modelId=MODEL_ID, body=json.dumps(body))model_response = json.loads(response["body"].read())base64_image_data = model_response["images"][0]i, output_dir = 1, "output"
if not os.path.exists(output_dir):os.makedirs(output_dir)
while os.path.exists(os.path.join(output_dir, f"img_{i}.png")):i += 1image_data = base64.b64decode(base64_image_data)image_path = os.path.join(output_dir, f"img_{i}.png")
with open(image_path, "wb") as file:file.write(image_data)print(f"The generated image has been saved to {image_path}")

该代码段生成的图像会被存储在本地文件系统的目录中,如果该目录不存在,程序会自动创建一个文件夹目录。为了避免覆盖已有的文件,代码会检查目录中是否存在同名文件,并自动将新生成的图片命名为img_<number>.png 格式,确保文件名称的唯一性。

想要了解更多关于调用Bedrock上的模型生成内容的细节,大家可以访问Amazon Bedrock Invoke API代码示例页面,学习如何使用不同的编程语言来构建不同种类的生成式AI应用。

其他风格/场景图片生成展示

以下是使用 Stable Diffusion 3.5 Large 生成的一些其他场景的示例图片:

提示词1:生成学生正使用Amazon Bedrock的图片

Prompt: Full-body university students working on a tech project with the words Stable Diffusion 3.5 in Amazon Bedrock, cheerful cursive typography font in the foreground.

 

提示词2: 生成三种不同颜色的药剂

Prompt: Photo of three potions: the first potion is blue with the label "MANA", the second potion is red with the label "HEALTH", the third potion is green with the label "POISON". Old apothecary.

提示词3:生成玫瑰花摄影

Prompt: Photography, pink rose flowers in the twilight, glowing, tile houses in the background. 

 

提示词4: 生成旅途冒险的3D卡通画面

Prompt: 3D animation scene of an adventurer traveling the world with his pet dog.

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/69473.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis学习之哨兵二

一、API 1.sentinel masters:展示被监控的主节点状态及相关的统计信息 2.sentinel master <master name>:展示指定的主节点的状态以及相关的统计信息 3.sentinel slaves <master name>:展示指定主节点的从节点状态以及相关的统计信息 4.sentinel sentinels <mas…

洛谷U525322 优美区间

优美区间 题目描述 有一个长度为 n n n 的数字序列&#xff0c;序列的第 i i i 个数为 a i a_i ai​。 定义区间 [ l , r ] [l,r] [l,r] 的优美程度为 gcd ⁡ ( a l , a l 1 , … , a r ) ∑ i l r a i \gcd(a_l,a_{l1},\dots,a_r)\times\sum\limits_{il}^ra_i gcd(…

如何把obsidian的md文档导出成图片,并加上文档属性

上篇关于这个插件PKMer_Obsidian 插件&#xff1a;Export Image plugin 一键将笔记转换为图片分享的文章 如何把obsidian的md文档导出成图片&#xff0c;并加上水印-CSDN博客 如何导出图片的时候让文档属性也显示出来&#xff0c;啊啊&#xff0c;这个功能找了一晚上&#xf…

新年祝词(原创)

新年将至&#xff0c;福进万户。 家家团圆&#xff0c;事事顺心。 喜迎财神&#xff0c;多寿添金。 瑞兽迎春&#xff0c;炮竹声起。 趋吉避凶&#xff0c;蛇年大吉。 中华崛起&#xff0c;人人自强。 天下大同&#xff0c;百姓富足。 有情有义&#xff0c;平易近人。 …

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.19 排序革命:argsort的十大高阶用法

1.19 排序革命&#xff1a;argsort的十大高阶用法 目录 #mermaid-svg-Qu8PcmLkIc1pOQJ7 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-Qu8PcmLkIc1pOQJ7 .error-icon{fill:#552222;}#mermaid-svg-Qu8PcmLkIc1pOQJ…

TensorFlow实现逻辑回归模型

逻辑回归是一种经典的分类算法&#xff0c;广泛应用于二分类问题。本文将介绍如何使用TensorFlow框架实现逻辑回归模型&#xff0c;并通过动态绘制决策边界和损失曲线来直观地观察模型的训练过程。 数据准备 首先&#xff0c;我们准备两类数据点&#xff0c;分别表示两个不同…

Unity git版本管理

创建仓库的时候添加了Unity的.gitignore模版&#xff0c;在这个时候就能自动过滤不需要的文件 打开git bash之后&#xff0c;步骤git版本管理-CSDN博客 如果报错&#xff0c;尝试重新进git 第一次传会耗时较长&#xff0c;之后的更新就很快了

【AI论文】扩散对抗后训练用于一步视频生成总结

摘要&#xff1a;扩散模型被广泛应用于图像和视频生成&#xff0c;但其迭代生成过程缓慢且资源消耗大。尽管现有的蒸馏方法已显示出在图像领域实现一步生成的潜力&#xff0c;但它们仍存在显著的质量退化问题。在本研究中&#xff0c;我们提出了一种在扩散预训练后针对真实数据…

低代码系统-产品架构案例介绍、明道云(十一)

明道云HAP-超级应用平台(Hyper Application Platform)&#xff0c;其实就是企业级应用平台&#xff0c;跟微搭类似。 通过自设计底层架构&#xff0c;兼容各种平台&#xff0c;使用低代码做到应用搭建、应用运维。 企业级应用平台最大的特点就是隐藏在冰山下的功能很深&#xf…

实时数据处理与模型推理:利用 Spring AI 实现对数据的推理与分析

在现代企业中&#xff0c;实时数据处理与快速决策已经成为关键需求。通过集成 Spring AI&#xff0c;我们不仅可以高效地获取实时数据&#xff0c;还可以将这些数据输入到 AI 模型中进行推理与分析&#xff0c;以便生成实时的业务洞察。 本文将讲解如何通过 Spring AI 实现实时…

制造企业的成本核算

一、生产成本与制造费用的区别 (1)生产成本,是直接用于产品生产,构成产品实体的材料成本。 包括企业在生产经营过程中实际消耗的原材料、辅助材料、备品备件、外购半成品、燃料、动力包装物以及其它直接材料,和直接参加产品生产的工人工资,以及按生产工人的工资总额和规…

2025年AI手机集中上市,三星Galaxy S25系列上市

2025年被认为是AI手机集中爆发的一年&#xff0c;各大厂商都会推出搭载人工智能的智能手机。三星Galaxy S25系列全球上市了。 三星Galaxy S25系列包含S25、S25和S25 Ultra三款机型&#xff0c;起售价为800美元&#xff08;约合人民币5800元&#xff09;。全系搭载骁龙8 Elite芯…

【ESP32】ESP-IDF开发 | WiFi开发 | TCP传输控制协议 + TCP服务器和客户端例程

1. 简介 TCP&#xff08;Transmission Control Protocol&#xff09;&#xff0c;全称传输控制协议。它的特点有以下几点&#xff1a;面向连接&#xff0c;每一个TCP连接只能是点对点的&#xff08;一对一&#xff09;&#xff1b;提供可靠交付服务&#xff1b;提供全双工通信&…

2025数学建模美赛|赛题翻译|E题

2025数学建模美赛&#xff0c;E题赛题翻译 更多美赛内容持续更新中...

【Elasticsearch】Elasticsearch的查询

Elasticsearch的查询 DSL查询基础语句叶子查询全文检索查询matchmulti_match 精确查询termrange 复合查询算分函数查询bool查询 排序分页基础分页深度分页 高亮高亮原理实现高亮 RestClient查询基础查询叶子查询复合查询排序和分页高亮 数据聚合DSL实现聚合Bucket聚合带条件聚合…

什么是循环神经网络?

一、概念 循环神经网络&#xff08;Recurrent Neural Network, RNN&#xff09;是一类用于处理序列数据的神经网络。与传统的前馈神经网络不同&#xff0c;RNN具有循环连接&#xff0c;可以利用序列数据的时间依赖性。正因如此&#xff0c;RNN在自然语言处理、时间序列预测、语…

零售EDI:Costco EDI 项目须知

Costco 是全球领先的会员制仓储式零售商&#xff0c;致力于为会员提供高品质且价格实惠的商品。其经营范围涵盖食品、电子产品、家居用品、服装和办公设备等多个领域。 Costco 的 EDI 对接需求分析 为了更高效地管理其复杂的全球供应链&#xff0c;Costco 采用了先进的 EDI&am…

Kafka运维宝典 (三)- Kafka 最大连接数超出限制问题、连接超时问题、消费者消费时间超过限制问题详细介绍

Kafka运维宝典 &#xff08;三&#xff09; 文章目录 Kafka运维宝典 &#xff08;三&#xff09;一、Kafka Broker 配置中的最大连接数超出限制问题1. 错误原因2. 相关 Kafka 配置参数2.1 connections.max2.2 max.connections.per.ip2.3 num.network.threads2.4 connections.ma…

模板泛化类如何卸载释放内存

CustomWidget::~CustomWidget() {for (size_t i 0; i < buttonManager.registerItem.size(); i) {delete buttonManager.registerItem(exitButton);} } 以上该怎么写删除对象操作&#xff0c;类如下&#xff1a;template <typename T> class GenericManager { public…

在Linux系统上安装.NET

测试系统&#xff1a;openKylin(开放麒麟) 1.确定系统和架构信息&#xff1a; 打开终端&#xff08;Ctrl Alt T&#xff09;&#xff0c;输入cat /etc/os-release查看系统版本相关信息。 输入uname -m查看系统架构。确保你的系统和架构符合.NET 的要求&#xff0c;如果架构…